**Pre-scriptum (PS)**, added on 6 March 2020: The ideas below also naturally lead to a theory about what a neutrino might actually be. As such, it’s a complete ‘alternative’ Theory of Everything. I uploaded the basics of such theory on my academia.edu site. For those who do not want to log on to academia.edu, you can also find the paper on my author’s page on Phil Gibb’s site.

**Text:**

We were rather tame in our last paper on the oscillator model of an electron. We basically took some philosophical distance from it by stating we should probably only think of it as a *mathematical equivalent *to Hestenesâ concept of the electron as a superconducting loop. However, deep inside, we feel we should *not *be invoking Maxwellâs laws of electrodynamics to explain what a proton and an electron might actually *be*. The basics of the ring current model can be summed up in one simple equation:

*c* = *a*ÂˇĎ

This is the formula for the tangential velocity. Einsteinâs mass-energy equivalence relation and the Planck-Einstein relation explain everything else[1], as evidenced by the fact that we can immediately derive the Compton radius of an electron from these three equations, as shown below:The reader might think we are just âcasually connecting formulasâ here[2] but we feel we have a full-blown theory of the electron here: simple and consistent. The geometry of the model is visualized below. We think of an electron (and a proton) as consisting of a pointlike elementary charge â pointlike but *not* *dimensionless***[3]** – moving about at (*nearly*) the speed of light around the center of its motion.

The relation works perfectly well for the electron. However, when applying the *a* = *Ä§*/m*c* radius formula to a proton, we get a value which is about 1/4 of the *measured *proton radius: about 0.21 fm, as opposed to the 0.83-0.84 fm charge radius which was established by Professors Pohl, Gasparan and others over the past decade.[4] In our papers on the proton radius[5],Â we motivated the 1/4 factor by referring to the energy equipartition theorem and assuming energy is, somehow, equally split over electromagnetic field energy and the kinetic energy in the motion of the *zbw *charge. However, the reader must have had the same feeling as we had: these assumptions are rather *ad hoc*. We, therefore, propose something more radical:

When considering systems (e.g. electron orbitals) and excited states of particles, angular momentum comes in units (nearly) equal to *Ä§*, but when considering the internal structure of elementary particles, (orbital) angular momentum comes in an integer fraction of Ä§. This fraction is 1/2 for the electron[6] and 1/4 for the proton.

Let us write this out for the proton radius:What are the implications for the assumed centripetal force keeping the elementary charge in motion? The centripetal acceleration is equal to *a*_{c} = *v*_{t}^{2}/*a* = *a*ÂˇĎ^{2}. It is probably useful to remind ourselves how we get this result so as to make sure our calculations are relativistically correct. The position vector *r* (which describes the position of the *zbw *charge) has a horizontal and a vertical component: *x* = *a*Âˇcos(Ďt) and *y* = *a*Âˇsin(Ďt). We can now calculate the two components of the (tangential) velocity vector *v* = d*r*/dt as *v*_{x} = –*a*ÂˇĎÂˇsin(Ďt) and *v*_{y}* y* = –*a*Âˇ ĎÂˇcos(Ďt) and, in the next step, the components of the (centripetal) acceleration vector *a*_{c}: *a*_{x} = –*a*ÂˇĎ^{2}Âˇcos(Ďt) and *a*_{y} = –*a*ÂˇĎ^{2}Âˇsin(Ďt). The magnitude of this vector is then calculated as follows:

*a*_{c}^{2} = *a*_{x}^{2} + *a*_{y}^{2} =Â *a*^{2}ÂˇĎ^{4}Âˇcos^{2}(Ďt) + *a*^{2}ÂˇĎ^{4}Âˇsin^{2}(Ďt) = *a*^{2}ÂˇĎ^{4} â *a*_{c} = *a*ÂˇĎ^{2} = *v*_{t}^{2}/*a*

Now, Newtonâs force law tells us that the magnitude of the centripetal force will be equal to:

F = m_{Îł}Âˇ*a*_{c} = m_{Îł}Âˇ*a*ÂˇĎ^{2}

As usual, the m_{Îł} factor is, once again, the *effective mass *of the *zbw *charge as it *zitters *around the center of its motion at (nearly) the speed of light: it is *half *the electron mass.[7] If we denote the centripetal force inside the electron as F_{e}, we can relate it to the electron mass m_{e} as follows:Assuming our logic in regard to the *effective *mass of the *zbw *charge inside a proton is also valid â and using the 4E = *Ä§*Ď and *a *= Ä§/4m*c* relations â we get the following equation for the centripetal force inside of a proton:

How should we think of this? In our oscillator model, we think of the centripetal force as a restoring force. This force depends linearly on the displacement from the center and the (linear) proportionality constant is usually written as k. Hence, we can write F_{e} and F_{p} as F_{e} = -k_{e}*x* and F_{p} = -k_{p}*x* respectively. Taking the ratio of both so as to have an idea of the respective strength of both forces, we get this:

The *a*_{p} and *a*_{e} are acceleration vectors â not the radius. The equation above seems to tell us that the centripetal force inside of a proton gives the *zbw *charge inside â which is nothing but the elementary charge, of course â an acceleration that is *four *times that of what might be going on inside the electron.

Nice, but how meaningful are these relations, really? If we would be thinking of the centripetal or restoring force as modeling some *elasticity *of spacetime â the *guts *intuition behind far more complicated string theories of matter â then we may think of distinguishing between a *fundamental *frequency and higher-level harmonics or overtones.[8] We will leave our reflections at that for the time being.

We should add one more note, however. We only talked about the electron and the proton here. What about other particles, such as neutrons or mesons? We do *not *consider these to be elementary because they are not stable: we think they are not stable because the Planck-Einstein relation is slightly *off*, which causes them to disintegrate into what weâve been trying to model here: stable stuff. As for the process of their disintegration, we think the approach that was taken by Gell-Man and others[9] is not productive: inventing new quantities that are supposedly being conserved â such as strangeness â isâŚ WellâŚ As strange as it sounds. We, therefore, think the concept of quarks confuses rather than illuminates the search for a truthful theory of matter.

Jean Louis Van Belle, 6 March 2020

[1] In this paper, we make abstraction of the anomaly, which is related to the *zbw *charge having a (tiny) spatial dimension.

[2] We had a signed contract with the IOP and WSP scientific publishing houses for our manuscript on a realist interpretation of quantum mechanics (https://vixra.org/abs/1901.0105) which was shot down by this simple comment. We have basically stopped tried convincing mainstream academics from that point onwards.

[3] See footnote 1.

[4] See our paper on the proton radius (https://vixra.org/abs/2002.0160).

[5] See reference above.

[6] The reader may wonder why we did not present the Â˝ fraction is the first set of equations (calculation of the electron radius). We refer him or her to our previous paper on the effective mass of the *zbw *charge (https://vixra.org/abs/2003.0094). The 1/2 factor appears when considering *orbital *angular momentum only.

[7] The reader may not be familiar with the concept of the effective mass of an electron but it pops up very naturally in the quantum-mechanical analysis of the linear motion of electrons. Feynman, for example, gets the equation out of a quantum-mechanical analysis of how an electron could move along a line of atoms in a crystal lattice. See: Feynmanâs *Lectures*, Vol. III, Chapter 16: *The Dependence of Amplitudes on Position *(https://www.feynmanlectures.caltech.edu/III_16.html). We think of the effective mass of the electron as the relativistic mass of the *zbw *charge as it whizzes about at nearly the speed of light. The rest mass of the *zbw *charge itself is close to â but also not quite equal to â zero. Indeed, based on the measured anomalous magnetic moment, we calculated the *rest *mass of the *zbw *charge as being equal to about 3.4% of the electron rest mass (https://vixra.org/abs/2002.0315).

[8] For a basic introduction, see my blog posts on *modes *or on music and physics (e.g. https://readingfeynman.org/2015/08/08/modes-and-music/).

[9] See, for example, the analysis of kaons (K-mesons) in Feynmanâs *Lectures*, Vol. III, Chapter 11, section 5 (https://www.feynmanlectures.caltech.edu/III_11.html#Ch11-S5).