Concluding remarks

In our previous post, we wrote that we’ve said goodbye to this fascinating field of research. We did: I entered this line of research – fundamental physics – as an amateur 10+ years ago, and now I leave it—as much an amateur now as back then. I wanted to understand the new theories which emerged over the past 50 years or so. Concepts such as the strong force or weak interactions and the new weird charges that come it with: flavors and colors—or all of the new quantum numbers and the associated new conservation laws, which Nature apparently does not respect because of some kind of hidden variables which cause the symmetries that are inherent to conservation laws to break down. […] Apparently, I didn’t get it. 🙂

However, in the process of trying to understand, a whole other mental picture or mindset emerged: we now firmly believe that classical mechanics and electromagnetism – combined with a more creative or realistic explanation of the Planck-Einstein relation – are sufficient to explain most, if not all, of the observations that have been made in this field since Louis de Broglie suggested matter-particles must be similar  to light quanta—in the sense that both are energy packets because they incorporate some oscillation of a definite frequency given by the Planck-Einstein relation. They are also different, of course: elementary particles are – in this world view – orbital oscillations of charge (with, of course, an electromagnetic field that is generated by such moving charge), while light-particles (photons and neutrinos) are oscillations of the electromagnetic field—only!

So, then we spend many years trying to contribute to the finer details of this world view. We think we did what we could as part of a part-time and non-professional involvement in this field. So, yes, we’re done. We wrote that some time already. However, we wanted to leave a few thoughts on our proton model: it is not like an electron. In our not-so-humble view, the Zitterbewegung theory applies to it—but in a very different way. Why do we think that? We write that out in our very last paper: concluding remarks on the proton puzzle. Enjoy it !

That brings the number of papers on RG up to 80 now. Too much ! There will be more coming, but in the field that I work in: computer science. Stay tuned !

The Mystery Wallahs

I’ve been working across Asia – mainly South Asia – for over 25 years now. You will google the exact meaning but my definition of a wallah is a someone who deals in something: it may be a street vendor, or a handyman, or anyone who brings something new. I remember I was one of the first to bring modern mountain bikes to India, and they called me a gear wallah—because they were absolute fascinated with the number of gears I had. [Mountain bikes are now back to a 2 by 10 or even a 1 by 11 set-up, but I still like those three plateaux in front on my older bikes—and, yes, my collection is becoming way too large but I just can’t do away with it.]

Any case, let me explain the title of this post. I stumbled on the work of the research group around Herman Batelaan in Nebraska. Absolutely fascinating ! Not only did they actually do the electron double-slit experiment, but their ideas on an actual Stern-Gerlach experiment with electrons are quite interesting: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1031&context=physicsgay

I also want to look at their calculations on momentum exchange between electrons in a beam: https://iopscience.iop.org/article/10.1088/1742-6596/701/1/012007.

Outright fascinating. Brilliant ! […]

It just makes me wonder: why is the outcome of this 100-year old battle between mainstream hocus-pocus and real physics so undecided?

I’ve come to think of mainstream physicists as peddlers in mysteries—whence the title of my post. It’s a tough conclusion. Physics is supposed to be the King of Science, right? Hence, we shouldn’t doubt it. At the same time, it is kinda comforting to know the battle between truth and lies rages everywhere—including inside of the King of Science.

JL

The ultimate electron model

A rather eminent professor in physics – who has contributed significantly to solving the so-called ‘proton radius puzzle’ – advised me to not think of the anomalous magnetic moment of the electron as an anomaly. It led to a breakthrough in my thinking of what an electron might actually be. The fine-structure constant should be part and parcel of the model, indeed. Check out my last paper ! I’d be grateful for comments !

I know the title of this post sounds really arrogant. It is what it is. Whatever brain I have has been thinking about these issues consciously and unconsciously for many years now. It looks good to me. When everything is said and done, the function of our mind is to make sense. What’s sense-making? I’d define sense-making as creating consistency between (1) the structure of our ideas and theories (which I’ll conveniently define as ‘mathematical’ here) and (2) what we think of as the structure of reality (which I’ll define as ‘physical’).

I started this blog reading Penrose (see the About page of this blog). And then I just put his books aside and started reading Feynman. I think I should start re-reading Penrose. His ‘mind-physics-math’ triangle makes a lot more sense to me now.

JL

PS: I agree the title of my post is excruciatingly arrogant but – believe me – I could have chosen an even more arrogant title. Why? Because I think my electron model actually explains mass. And it does so in a much more straightforward manner than Higgs, or Brout–Englert–Higgs, or Englert–Brout–Higgs–Guralnik–Hagen–Kibble, Anderson–Higgs, Anderson–Higgs–Kibble, Higgs–Kibble, or ABEGHHK’t (for Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble, and ‘t Hooft) do. [I am just trying to attribute the theory here using the Wikipedia article on it.]