The anomalous magnetic moment: classical calculations

0123456789p10p11p12p13

Interpreting quantum mechanics

My book is moving forward. I just produced a very first promotional video. Have a look and let me know what you think of it ! 🙂

The not-so-anomalous magnetic moment of an electron

Note: Check the revised paper on this topic. The substance is the same, but it is a more coherent development. 

Jean Louis Van Belle, 23 December 2018

Original post:

I am going to expose a bright shining lie in (quantum) physics in this post: what is referred to as the electron’s anomalous magnetic moment is actually not a magnetic moment, and it is not anomalous. Let’s start with the first remark. The anomalous magnetic moment is not a magnetic moment. It is just some (real) number: it’s a ratio, to be precise. It does not have any physical dimension. If it would be an actual magnetic moment then we would measure it as we usually do in the context of quantum mechanics, and that is in terms of the Bohr magneton, which is equal to: μB = qeħ/2m ≈ 9.274×10−24 joule per tesla.[1]

So what is the electron’s anomalous magnetic moment – denoted by ae – then? It is defined as the (half-)difference between (1) some supposedly real gyromagnetic ratio (ge) and (2) Dirac’s theoretical value for the gyromagnetic ratio of a spin-only electron (g = 2)[2]:F1This immediately triggers an obvious question: why would we use the g-factor of a spin-only electron. This is a very weird thing to do, because the electron in the cyclotron (a Penning trap) is actually not a spin-only electron: it follows an orbital motion – as we will explain shortly.

So… Well… It is also routinely said (and written) that its measured value is equal to 0.00115965218085(76). The 76 (between brackets) is the uncertainty – which looks pretty certain, because it is equal to 0.00000000000076. Hence, the precision here is equivalent to 76 parts per trillion (ppt). It is measured as a standard deviation.[3] However, the problem is that these experiments actually do not directly measure ae. What is being measured in the so-called Penning traps that are used in these experiments (think of them as a sort of cyclotron) are two slightly different frequencies – an orbital frequency and a precession frequency, to be precise – and ae is then calculated as the fractional difference between the two:F2Let us go through the motions here – literally. The orbital frequency fc is the cyclotron frequency: a charged particle in a Penning trap will move in a circular orbit whose frequency depends on the charge, its mass and the strength of the magnetic field only. Let us give you the formula (we will derive it for you in an instant):F3The subscript c stands for cyclotron – or circular, if you want. We should not think of the speed of light here! In fact, the orbital velocity is a (relatively small) fraction of the speed of light and we can, therefore, use non-relativistic formulas. The derivation of the formula is quite straightforward – but we find it useful to recap it. It is based on a simple analysis of the Lorentz force, which is just the magnetic force here[4]: F = v(q×B). Note that the frequency does not depend on the velocity or the radius of the circular motion. This is actually the whole idea of the trap: the electron can be inserted into the trap with a precise kinetic energy and will follow a circular trajectory if the frequency of the alternating voltage is kept constant. This is why we italicized only when writing that the orbital frequency depends on the charge, the mass and the strength of the magnetic field only. So what is the derivation? The Lorentz force is equal to the centripetal force here. We can therefore write:F4The v2/r factor is the centripetal acceleration. Hence, the F = m·v2/r does effectively represent Newton’s force law. The equation above yields the following formula for v and the v/r ratio:vNow, the cyclotron frequency fc will respect the following equation:F7Re-arranging and substituting v for q·r·b/m yields:F8The associated current will be equal to:F9Hence, the magnetic moment is equal to:F10The angular momentum – which we will denote by – is equal to[5]:F11Hence, we can write the g-factor as:F12It is what we would expect it to be: it is the gyromagnetic ratio for the orbital moment of the electron. It is one, not 2. Because gc is 1, we can write something very obvious:F13We should also note another equality here:F14Let us now look at the other frequency fs. It is the Larmor or precession frequency. It is (also) a classical thing: if we think of the electron as a tiny magnet with a magnetic moment that is proportional to its angular momentum, then it should, effectively, precess in a magnetic field. The analysis of precession is quite straightforward. The geometry of the situation is shown below and we may refer to (almost) any standard physics textbook for the derivation.[6]

precession frequency

pIt is tempting to use the equality above and write this as:F16However, we should not do this. The precession causes the electron to wobble: its plane of rotation – and, hence, the axis of the angular momentum (and the magnetic moment) – is no longer fixed. This wobbling motion changes the orbital and, therefore, we can no longer trust the values we have used in our formulas for the angular momentum and the magnetic moment. There is, therefore, nothing anomalous about the anomalous magnetic moment. In fact, we should not wonder why it is not zero, but – as we will argue – we should wonder why it is so nearly zero.

Let us continue our analysis. It is, in fact, a bit weird to associate a gyromagnetic ratio with this motion, but that is what the physicists doing these experiments do. We will denote this g-factor by gp:F17Hence, we can write the following tautology:F18You can verify that this is nothing but a tautology by writing it all out:F19We can, of course, measure the frequency in cycles per second (as opposed to radians per second):F20Hence, we get the following expression for the so-called anomalous magnetic moment of an electron ae:F21Hence, the so-called anomalous magnetic moment of an electron is nothing but the ratio of two mathematical factors – definitions, basically – which we can express in terms of actual frequencies:F22Our formula for ae now becomes:F23Of course, if we use the μ/J = 2m/q equality, then the fp/fc ratio will be equal to 1/2, and ae will not be zero but −1/2:F24However, as mentioned above, we should not do that. The precession causes the magnetic moment and the angular momentum to wobble. Hence, there is nothing anomalous about the anomalous magnetic moment. We should not wonder why its value is not zero. We should wonder why it is so nearly zero.

[1] Needless to say, the tesla is the SI unit for the magnitude of a magnetic field. We can also write it as [B] = N/(m∙A), using the SI unit for current, i.e. the ampere (A). Now, 1 C = 1 A∙s and, hence, 1 N/(m∙A) = 1 (N/C)/(m/s). Hence, the physical dimension of the magnetic field is the physical dimension of the electric field (N/C) divided by m/s. We like the [E] = [B]·m/s expression because it reflects the geometry of the electric and magnetic field vectors.

[2] See: Physics Today, 1 August 2006, p. 15 (https://physicstoday.scitation.org/doi/10.1063/1.2349714). The article also explains the methodology of the experiment in terms of the frequency measurements, which we explain above.

[3] See: G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, New Determination of the Fine Structure Constant from the Electron g Value and QED, Phys. Rev. Lett. 97, 030802 (2006). More recent theory and experiments may have come up with an even more precise number.

[4] Our derivation is based on the following reference: https://www.didaktik.physik.uni-muenchen.de/elektronenbahnen/en/b-feld/anwendung/zyklotron2.php.

[5] J is the symbol which Feynman uses. In many articles and textbooks, one will read L instead of J. Note that the symbols may be confusing: I is a current, but I is the moment of inertia. It is equal to m·r2 for a rotating mass.

[6] We like the intuitive – but precise – explanation in Feynman’s Lectures (II-34-3), from which we also copied the illustration.

An intuitive interpretation of Einstein’s mass-energy equivalence relation

My dear readers – I haven’t published much lately, because I try to summarize my ideas now in short articles that might be suitable for publication in a journal. I think the latest one (on Einstein’s mass-energy relation) should be of interest. Let me just insert the summary here:

The radial velocity formula and the Planck-Einstein relation give us the Zitterbewegung (zbw) frequency (E = ħω = E/ħ) and zbw radius (a = c/ω = cħ/mc2 = ħ/mc) of  the electron. We interpret this by noting that the c = aω identity gives us the E = mc2 = ma2ω2 equation, which suggests we should combine the total energy (kinetic and potential) of two harmonic oscillators to explain the electron mass. We do so by interpreting the elementary wavefunction as a two-dimensional (harmonic) electromagnetic oscillation in real space which drives the pointlike charge along the zbw current ring. This implies a dual view of the reality of the real and imaginary part of the wavefunction:

  1. The x = acos(ωt) and y = a·sin(ωt) equations describe the motion of the pointlike charge.
  2. As an electromagnetic oscillation, we write it as E0 = E0cos(ωt+π/2) + i·E0·sin(ωt+π/2).

The magnitudes of the oscillation a and E0 are expressed in distance (m) and force per unit charge (N/C) respectively and are related because the energy of both oscillations is one and the same. The model – which implies the energy of the oscillation and, therefore, the effective mass of the electron is spread over the zbw disk – offers an equally intuitive explanation for the angular momentum, magnetic moment and the g-factor of charged spin-1/2 particles. Most importantly, the model also offers us an intuitive interpretation of Einstein’s enigmatic mass-energy equivalence relation. Going from the stationary to the moving reference frame, we argue that the plane of the zbw oscillation should be parallel to the direction of motion so as to be consistent with the results of the Stern-Gerlach experiment.

So… Well… Have fun with it ! I think I am going to sign off. 🙂 Yours – JL

Polarization states as hidden variables?

This post explores the limits of the physical interpretation of the wavefunction we have been building up in previous posts. It does so by examining if it can be used to provide a hidden-variable theory for explaining quantum-mechanical interference. The hidden variable is the polarization state of the photon.

The outcome is as expected: the theory does not work. Hence, this paper clearly shows the limits of any physical or geometric interpretation of the wavefunction.

This post sounds somewhat academic because it is, in fact, a draft of a paper I might try to turn into an article for a journal. There is a useful addendum to the post below: it offers a more sophisticated analysis of linear and circular polarization states (see: Linear and Circular Polarization States in the Mach-Zehnder Experiment). Have fun with it !

A physical interpretation of the wavefunction

Duns Scotus wrote: pluralitas non est ponenda sine necessitate. Plurality is not to be posited without necessity.[1] And William of Ockham gave us the intuitive lex parsimoniae: the simplest solution tends to be the correct one.[2] But redundancy in the description does not seem to bother physicists. When explaining the basic axioms of quantum physics in his famous Lectures on quantum mechanics, Richard Feynman writes:

“We are not particularly interested in the mathematical problem of finding the minimum set of independent axioms that will give all the laws as consequences. Redundant truth does not bother us. We are satisfied if we have a set that is complete and not apparently inconsistent.”[3]

Also, most introductory courses on quantum mechanics will show that both ψ = exp(iθ) = exp[i(kx-ωt)] and ψ* = exp(-iθ) = exp[-i(kx-ωt)] = exp[i(ωt-kx)] = -ψ are acceptable waveforms for a particle that is propagating in the x-direction. Both have the required mathematical properties (as opposed to, say, some real-valued sinusoid). We would then think some proof should follow of why one would be better than the other or, preferably, one would expect as a discussion on what these two mathematical possibilities might represent¾but, no. That does not happen. The physicists conclude that “the choice is a matter of convention and, happily, most physicists use the same convention.”[4]

Instead of making a choice here, we could, perhaps, use the various mathematical possibilities to incorporate spin in the description, as real-life particles – think of electrons and photons here – have two spin states[5] (up or down), as shown below.

Table 1: Matching mathematical possibilities with physical realities?[6]

Spin and direction Spin up Spin down
Positive x-direction ψ = exp[i(kx-ωt)] ψ* = exp[i(ωt-kx)]
Negative x-direction χ = exp[i(ωt-kx)] χ* = exp[i(kx+ωt)]

That would make sense – for several reasons. First, theoretical spin-zero particles do not exist and we should therefore, perhaps, not use the wavefunction to describe them. More importantly, it is relatively easy to show that the weird 720-degree symmetry of spin-1/2 particles collapses into an ordinary 360-degree symmetry and that we, therefore, would have no need to describe them using spinors and other complicated mathematical objects.[7] Indeed, the 720-degree symmetry of the wavefunction for spin-1/2 particles is based on an assumption that the amplitudes C’up = -Cup and C’down = -Cdown represent the same state—the same physical reality. As Feynman puts it: “Both amplitudes are just multiplied by −1 which gives back the original physical system. It is a case of a common phase change.”[8]

In the physical interpretation given in Table 1, these amplitudes do not represent the same state: the minus sign effectively reverses the spin direction. Putting a minus sign in front of the wavefunction amounts to taking its complex conjugate: -ψ = ψ*. But what about the common phase change? There is no common phase change here: Feynman’s argument derives the C’up = -Cup and C’down = -Cdown identities from the following equations: C’up = eCup and C’down = eCdown. The two phase factors  are not the same: +π and -π are not the same. In a geometric interpretation of the wavefunction, +π is a counterclockwise rotation over 180 degrees, while -π is a clockwise rotation. We end up at the same point (-1), but it matters how we get there: -1 is a complex number with two different meanings.

We have written about this at length and, hence, we will not repeat ourselves here.[9] However, this realization – that one of the key propositions in quantum mechanics is basically flawed – led us to try to question an axiom in quantum math that is much more fundamental: the loss of determinism in the description of interference.

The reader should feel reassured: the attempt is, ultimately, not successful—but it is an interesting exercise.

The loss of determinism in quantum mechanics

The standard MIT course on quantum physics vaguely introduces Bell’s Theorem – labeled as a proof of what is referred to as the inevitable loss of determinism in quantum mechanics – early on. The argument is as follows. If we have a polarizer whose optical axis is aligned with, say, the x-direction, and we have light coming in that is polarized along some other direction, forming an angle α with the x-direction, then we know – from experiment – that the intensity of the light (or the fraction of the beam’s energy, to be precise) that goes through the polarizer will be equal to cos2α.

But, in quantum mechanics, we need to analyze this in terms of photons: a fraction cos2α of the photons must go through (because photons carry energy and that’s the fraction of the energy that is transmitted) and a fraction 1-cos2α must be absorbed. The mentioned MIT course then writes the following:

“If all the photons are identical, why is it that what happens to one photon does not happen to all of them? The answer in quantum mechanics is that there is indeed a loss of determinism. No one can predict if a photon will go through or will get absorbed. The best anyone can do is to predict probabilities. Two escape routes suggest themselves. Perhaps the polarizer is not really a homogeneous object and depending exactly on where the photon is it either gets absorbed or goes through. Experiments show this is not the case.

A more intriguing possibility was suggested by Einstein and others. A possible way out, they claimed, was the existence of hidden variables. The photons, while apparently identical, would have other hidden properties, not currently understood, that would determine with certainty which photon goes through and which photon gets absorbed. Hidden variable theories would seem to be untestable, but surprisingly they can be tested. Through the work of John Bell and others, physicists have devised clever experiments that rule out most versions of hidden variable theories. No one has figured out how to restore determinism to quantum mechanics. It seems to be an impossible task.”[10]

The student is left bewildered here. Are there only two escape routes? And is this the way how polarization works, really? Are all photons identical? The Uncertainty Principle tells us that their momentum, position, or energy will be somewhat random. Hence, we do not need to assume that the polarizer is nonhomogeneous, but we need to think of what might distinguish the individual photons.

Considering the nature of the problem – a photon goes through or it doesn’t – it would be nice if we could find a binary identifier. The most obvious candidate for a hidden variable would be the polarization direction. If we say that light is polarized along the x-direction, we should, perhaps, distinguish between a plus and a minus direction? Let us explore this idea.

Linear polarization states

The simple experiment above – linearly polarized light going through a polaroid – involves linearly polarized light. We can easily distinguish between left- and right-hand circular polarization, but if we have linearly polarized light, can we distinguish between a plus and a minus direction? Maybe. Maybe not. We can surely think about different relative phases and how that could potentially have an impact on the interaction with the molecules in the polarizer.

Suppose the light is polarized along the x-direction. We know the component of the electric field vector along the y-axis[11] will then be equal to Ey = 0, and the magnitude of the x-component of E will be given by a sinusoid. However, here we have two distinct possibilities: Ex = cos(ω·t) or, alternatively, Ex = sin(ω·t). These are the same functions but – crucially important – with a phase difference of 90°: sin(ω·t) = cos(ω·t + π/2).

  Figure 1: Two varieties of linearly polarized light?[12]

600px-Sine_cosine_one_period

Would this matter? Sure. We can easily come up with some classical explanations of why this would matter. Think, for example, of birefringent material being defined in terms of quarter-wave plates. In fact, the more obvious question is: why would this not make a difference?

Of course, this triggers another question: why would we have two possibilities only? What if we add an additional 90° shift to the phase? We know that cos(ω·t + π) = –cos(ω·t). We cannot reduce this to cos(ω·t) or sin(ω·t). Hence, if we think in terms of 90° phase differences, then –cos(ω·t) = cos(ω·t + π)  and –sin(ω·t) = sin(ω·t + π) are different waveforms too. In fact, why should we think in terms of 90° phase shifts only? Why shouldn’t we think of a continuum of linear polarization states?

We have no sensible answer to that question. We can only say: this is quantum mechanics. We think of a photon as a spin-one particle and, for that matter, as a rather particular one, because it misses the zero state: it is either up, or down. We may now also assume two (linear) polarization states for the molecules in our polarizer and suggest a basic theory of interaction that may or may not explain this very basic fact: a photon gets absorbed, or it gets transmitted. The theory is that if the photon and the molecule are in the same (linear) polarization state, then we will have constructive interference and, somehow, a photon gets through.[13] If the linear polarization states are opposite, then we will have destructive interference and, somehow, the photon is absorbed. Hence, our hidden variables theory for the simple situation that we discussed above (a photon does or does not go through a polarizer) can be summarized as follows:

Linear polarization state Incoming photon up (+) Incoming photon down (-)
Polarizer molecule up (+) Constructive interference: photon goes through Destructive interference: photon is absorbed
Polarizer molecule down (-) Destructive interference: photon is absorbed Constructive interference: photon goes through

Nice. No loss of determinism here. But does it work? The quantum-mechanical mathematical framework is not there to explain how a polarizer could possibly work. It is there to explain the interference of a particle with itself. In Feynman’s words, this is the phenomenon “which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics.”[14]

So, let us try our new theory of polarization states as a hidden variable on one of those interference experiments. Let us choose the standard one: the Mach-Zehnder interferometer experiment.

Polarization states as hidden variables in the Mach-Zehnder experiment

The setup of the Mach-Zehnder interferometer is well known and should, therefore, probably not require any explanation. We have two beam splitters (BS1 and BS2) and two perfect mirrors (M1 and M2). An incident beam coming from the left is split at BS1 and recombines at BS2, which sends two outgoing beams to the photon detectors D0 and D1. More importantly, the interferometer can be set up to produce a precise interference effect which ensures all the light goes into D0, as shown below. Alternatively, the setup may be altered to ensure all the light goes into D1.

Figure 2: The Mach-Zehnder interferometer[15]

Mach Zehnder

The classical explanation is easy enough. It is only when we think of the beam as consisting of individual photons that we get in trouble. Each photon must then, somehow, interfere with itself which, in turn, requires the photon to, somehow, go through both branches of the interferometer at the same time. This is solved by the magical concept of the probability amplitude: we think of two contributions a and b (see the illustration above) which, just like a wave, interfere to produce the desired result¾except that we are told that we should not try to think of these contributions as actual waves.

So that is the quantum-mechanical explanation and it sounds crazy and so we do not want to believe it. Our hidden variable theory should now show the photon does travel along one path only. If the apparatus is set up to get all photons in the D0 detector, then we might, perhaps, have a sequence of events like this:

Photon polarization At BS1 At BS2 Final result
Up (+) Photon is reflected Photon is reflected Photon goes to D0
Down () Photon is transmitted Photon is transmitted Photon goes to D0

 

Of course, we may also set up the apparatus to get all photons in the D1 detector, in which case the sequence of events might be this:

Photon polarization At BS1 At BS2 Final result
Up (+) Photon is reflected Photon is transmitted Photon goes to D1
Down () Photon is transmitted Photon is reflected Photon goes to D1

This is a nice symmetrical explanation that does not involve any quantum-mechanical weirdness. The problem is: it cannot work. Why not? What happens if we block one of the two paths? For example, let us block the lower path in the setup where all photons went to D0. We know – from experiment – that the outcome will be the following:

Final result Probability
Photon is absorbed at the block 0.50
Photon goes to D0 0.25
Photon goes to D1 0.25

How is this possible? Before blocking the lower path, no photon went to D1. They all went to D0. If our hidden variable theory was correct, the photons that do not get absorbed should also go to D0, as shown below.

Photon polarization At BS1 At BS2 Final result
Up (+) Photon is reflected Photon is reflected Photon goes to D0
Down () Photon is absorbed Photon was absorbed Photon was absorbed

Conclusion

Our hidden variable theory does not work. Physical or geometric interpretations of the wavefunction are nice, but they do not explain quantum-mechanical interference. Their value is, therefore, didactic only.

Jean Louis Van Belle, 2 November 2018

References

This paper discusses general principles in physics only. Hence, references were limited to references to general textbooks and courses and physics textbooks only. The two key references here are the MIT introductory course on quantum physics and Feynman’s Lectures – both of which can be consulted online. Additional references to other material are given in the text itself (see footnotes).

[1] Duns Scotus, Commentaria.

[2] See: https://en.wikipedia.org/wiki/Occam%27s_razor.

[3] Feynman’s Lectures on Quantum Mechanics, Vol. III, Chapter 5, Section 5.

[4] See, for example, the MIT’s edX Course 8.04.1x (Quantum Physics), Lecture Notes, Chapter 4, Section 3.

[5] Photons are spin-one particles but they do not have a spin-zero state.

[6] Of course, the formulas only give the elementary wavefunction. The wave packet will be a Fourier sum of such functions.

[7] See, for example, https://warwick.ac.uk/fac/sci/physics/staff/academic/mhadley/explanation/spin/, accessed on 30 October 2018

[8] Feynman’s Lectures on Quantum Mechanics, Vol. III, Chapter 6, Section 3.

[9] Jean Louis Van Belle, Euler’s wavefunction (http://vixra.org/abs/1810.0339, accessed on 30 October 2018)

[10] See: MIT edX Course 8.04.1x (Quantum Physics), Lecture Notes, Chapter 1, Section 3 (Loss of determinism).

[11] The z-direction is the direction of wave propagation in this example. In quantum mechanics, we often define the direction of wave propagation as the x-direction. This will, hopefully, not confuse the reader. The choice of axes is usually clear from the context.

[12] Source of the illustration: https://upload.wikimedia.org/wikipedia/commons/7/71/Sine_cosine_one_period.svg..

[13] Classical theory assumes an atomic or molecular system will absorb a photon and, therefore, be in an excited state (with higher energy). The atomic or molecular system then goes back into its ground state by emitting another photon with the same energy. Hence, we should probably not think in terms of a specific photon getting through.

[14] Feynman’s Lectures on Quantum Mechanics, Vol. III, Chapter 1, Section 1.

[15] Source of the illustration: MIT edX Course 8.04.1x (Quantum Physics), Lecture Notes, Chapter 1, Section 4 (Quantum Superpositions).

Surely You’re Joking, Mr Feynman !

I think I cracked the nut. Academics always throw two nasty arguments into the discussion on any geometric or physical interpretations of the wavefunction:

  1. The superposition of wavefunctions is done in the complex space and, hence, the assumption of a real-valued envelope for the wavefunction is, therefore, not acceptable.
  2. The wavefunction for spin-1/2 particles cannot represent any real object because of its 720-degree symmetry in space. Real objects have the same spatial symmetry as space itself, which is 360 degrees. Hence, physical interpretations of the wavefunction are nonsensical.

Well… I’ve finally managed to deconstruct those arguments – using, paradoxically, Feynman’s own arguments against him. Have a look: click the link to my latest paper ! Enjoy !

The metaphysics of physics

I realized that my last posts were just some crude and rude soundbites, so I thought it would be good to briefly summarize them into something more coherent. Please let me know what you think of it.

The Uncertainty Principle: epistemology versus physics

Anyone who has read anything about quantum physics will know that its concepts and principles are very non-intuitive. Several interpretations have therefore emerged. The mainstream interpretation of quantum mechanics is referred to as the Copenhagen interpretation. It mainly distinguishes itself from more frivolous interpretations (such as the many-worlds and the pilot-wave interpretations) because it is… Well… Less frivolous. Unfortunately, the Copenhagen interpretation itself seems to be subject to interpretation.

One such interpretation may be referred to as radical skepticism – or radical empiricism[1]: we can only say something meaningful about Schrödinger’s cat if we open the box and observe its state. According to this rather particular viewpoint, we cannot be sure of its reality if we don’t make the observation. All we can do is describe its reality by a superposition of the two possible states: dead or alive. That’s Hilbert’s logic[2]: the two states (dead or alive) are mutually exclusive but we add them anyway. If a tree falls in the wood and no one hears it, then it is both standing and not standing. Richard Feynman – who may well be the most eminent representative of mainstream physics – thinks this epistemological position is nonsensical, and I fully agree with him:

“A real tree falling in a real forest makes a sound, of course, even if nobody is there. Even if no one is present to hear it, there are other traces left. The sound will shake some leaves, and if we were careful enough we might find somewhere that some thorn had rubbed against a leaf and made a tiny scratch that could not be explained unless we assumed the leaf were vibrating.” (Feynman’s Lectures, III-2-6)

So what is the mainstream physicist’s interpretation of the Copenhagen interpretation of quantum mechanics then? To fully answer that question, I should encourage the reader to read all of Feynman’s Lectures on quantum mechanics. But then you are reading this because you don’t want to do that, so let me quote from his introductory Lecture on the Uncertainty Principle: “Making an observation affects the phenomenon. The point is that the effect cannot be disregarded or minimized or decreased arbitrarily by rearranging the apparatus. When we look for a certain phenomenon we cannot help but disturb it in a certain minimum way.” (ibidem)

It has nothing to do with consciousness. Reality and consciousness are two very different things. After having concluded the tree did make a noise, even if no one was there to  hear it, he wraps up the philosophical discussion as follows: “We might ask: was there a sensation of sound? No, sensations have to do, presumably, with consciousness. And whether ants are conscious and whether there were ants in the forest, or whether the tree was conscious, we do not know. Let us leave the problem in that form.” In short, I think we can all agree that the cat is dead or alive, or that the tree is standing or not standing¾regardless of the observer. It’s a binary situation. Not something in-between. The box obscures our view. That’s all. There is nothing more to it.

Of course, in quantum physics, we don’t study cats but look at the behavior of photons and electrons (we limit our analysis to quantum electrodynamics – so we won’t discuss quarks or other sectors of the so-called Standard Model of particle physics). The question then becomes: what can we reasonably say about the electron – or the photon – before we observe it, or before we make any measurement. Think of the Stein-Gerlach experiment, which tells us that we’ll always measure the angular momentum of an electron – along any axis we choose – as either +ħ/2 or, else, as -ħ/2. So what’s its state before it enters the apparatus? Do we have to assume it has some definite angular momentum, and that its value is as binary as the state of our cat (dead or alive, up or down)?

We should probably explain what we mean by a definite angular momentum. It’s a concept from classical physics, and it assumes a precise value (or magnitude) along some precise direction. We may challenge these assumptions. The direction of the angular momentum may be changing all the time, for example. If we think of the electron as a pointlike charge – whizzing around in its own space – then the concept of a precise direction of its angular momentum becomes quite fuzzy, because it changes all the time. And if its direction is fuzzy, then its value will be fuzzy as well. In classical physics, such fuzziness is not allowed, because angular momentum is conserved: it takes an outside force – or torque – to change it. But in quantum physics, we have the Uncertainty Principle: some energy (force over a distance, remember) can be borrowed – so to speak – as long as it’s swiftly being returned – within the quantitative limits set by the Uncertainty Principle: ΔE·Δt = ħ/2.

Mainstream physicists – including Feynman – do not try to think about this. For them, the Stern-Gerlach apparatus is just like Schrödinger’s box: it obscures the view. The cat is dead or alive, and each of the two states has some probability – but they must add up to one – and so they will write the state of the electron before it enters the apparatus as the superposition of the up and down states. I must assume you’ve seen this before:

|ψ〉 = Cup|up〉 + Cdown|down〉

It’s the so-called Dirac or bra-ket notation. Cup is the amplitude for the electron spin to be equal to +ħ/2 along the chosen direction – which we refer to as the z-direction because we will choose our reference frame such that the z-axis coincides with this chosen direction – and, likewise, Cup is the amplitude for the electron spin to be equal to -ħ/2 (along the same direction, obviously). Cup and Cup will be functions, and the associated probabilities will vary sinusoidally – with a phase difference so as to make sure both add up to one.

The model is consistent, but it feels like a mathematical trick. This description of reality – if that’s what it is – does not feel like a model of a real electron. It’s like reducing the cat in our box to the mentioned fuzzy state of being alive and dead at the same time. Let’s try to come up with something more exciting. 😊

[1] Academics will immediately note that radical empiricism and radical skepticism are very different epistemological positions but we are discussing some basic principles in physics here rather than epistemological theories.

[2] The reference to Hilbert’s logic refers to Hilbert spaces: a Hilbert space is an abstract vector space. Its properties allow us to work with quantum-mechanical states, which become state vectors. You should not confuse them with the real or complex vectors you’re used to. The only thing state vectors have in common with real or complex vectors is that (1) we also need a base (aka as a representation in quantum mechanics) to define them and (2) that we can make linear combinations.

The ‘flywheel’ electron model

Physicists describe the reality of electrons by a wavefunction. If you are reading this article, you know how a wavefunction looks like: it is a superposition of elementary wavefunctions. These elementary wavefunctions are written as Ai·exp(-iθi), so they have an amplitude Ai  and an argument θi = (Ei/ħ)·t – (pi/ħ)·x. Let’s forget about uncertainty, so we can drop the index (i) and think of a geometric interpretation of A·exp(-iθ) = A·eiθ.

Here we have a weird thing: physicists think the minus sign in the exponent (-iθ) should always be there: the convention is that we get the imaginary unit (i) by a 90° rotation of the real unit (1) – but the rotation is counterclockwise rotation. I like to think a rotation in the clockwise direction must also describe something real. Hence, if we are seeking a geometric interpretation, then we should explore the two mathematical possibilities: A·eiθ and A·e+iθ. I like to think these two wavefunctions describe the same electron but with opposite spin. How should we visualize this? I like to think of A·eiθ and A·e+iθ as two-dimensional harmonic oscillators:

eiθ = cos(-θ) + i·sin(-θ) = cosθ – i·sinθ

e+iθ = cosθ + i·sinθ

So we may want to imagine our electron as a pointlike electric charge (see the green dot in the illustration below) to spin around some center in either of the two possible directions. The cosine keeps track of the oscillation in one dimension, while the sine (plus or minus) keeps track of the oscillation in a direction that is perpendicular to the first one.

Figure 1: A pointlike charge in orbit

Circle_cos_sin

So we have a weird oscillator in two dimensions here, and we may calculate the energy in this oscillation. To calculate such energy, we need a mass concept. We only have a charge here, but a (moving) charge has an electromagnetic mass. Now, the electromagnetic mass of the electron’s charge may or may not explain all the mass of the electron (most physicists think it doesn’t) but let’s assume it does for the sake of the model that we’re trying to build up here. The point is: the theory of electromagnetic mass gives us a very simple explanation for the concept of mass here, and so we’ll use it for the time being. So we have some mass oscillating in two directions simultaneously: we basically assume space is, somehow, elastic. We have worked out the V-2 engine metaphor before, so we won’t repeat ourselves here.

Figure 2: A perpetuum mobile?

V2

Previously unrelated but structurally similar formulas may be related here:

  1. The energy of an oscillator: E = (1/2)·m·a2ω2
  2. Kinetic energy: E = (1/2)·m·v2
  3. The rotational (kinetic) energy that’s stored in a flywheel: E = (1/2)·I·ω2 = (1/2)·m·r2·ω2
  4. Einstein’s energy-mass equivalence relation: E = m·c2

Of course, we are mixing relativistic and non-relativistic formulas here, and there’s the 1/2 factor – but these are minor issues. For example, we were talking not one but two oscillators, so we should add their energies: (1/2)·m·a2·ω2 + (1/2)·m·a2·ω2 = m·a2·ω2. Also, one can show that the classical formula for kinetic energy (i.e. E = (1/2)·m·v2) morphs into E = m·c2 when we use the relativistically correct force equation for an oscillator. So, yes, our metaphor – or our suggested physical interpretation of the wavefunction, I should say – makes sense.

If you know something about physics, then you know the concept of the electromagnetic mass – its mathematical derivation, that is – gives us the classical electron radius, aka as the Thomson radius. It’s the smallest of a trio of radii that are relevant when discussing electrons: the other two radii are the Bohr radius and the Compton scattering radius respectively. The Thomson radius is used in the context of elastic scattering: the frequency of the incident particle (usually a photon), and the energy of the electron itself, do not change. In contrast, Compton scattering does change the frequency of the photon that is being scattered, and also impacts the energy of our electron. [As for the Bohr radius, you know that’s the radius of an electron orbital, roughly speaking – or the size of a hydrogen atom, I should say.]

Now, if we combine the E = m·a2·ω2 and E = m·c2 equations, then a·ω must be equal to c, right? Can we show this? Maybe. It is easy to see that we get the desired equality by substituting the amplitude of the oscillation (a) for the Compton scattering radius r = ħ/(m·c), and ω (the (angular) frequency of the oscillation) by using the Planck relation (ω = E/ħ):     

a·ω = [ħ/(m·c)]·[E/ħ] = E/(m·c) = m·c2/(m·c) = c

We get a wonderfully simple geometric model of an electron here: an electric charge that spins around in a plane. Its radius is the Compton electron radius – which makes sense – and the radial velocity of our spinning charge is the speed of light – which may or may not make sense. Of course, we need an explanation of why this spinning charge doesn’t radiate its energy away – but then we don’t have such explanation anyway. All we can say is that the electron charge seems to be spinning in its own space – that it’s racing along a geodesic. It’s just like mass creates its own space here: according to Einstein’s general relativity theory, gravity becomes a pseudo-force—literally: no real force. How? I am not sure: the model here assumes the medium – empty space – is, somehow, perfectly elastic: the electron constantly borrows energy from one direction and then returns it to the other – so to speak. A crazy model, yes – but is there anything better? We only want to present a metaphor here: a possible visualization of quantum-mechanical models.

However, if this model is to represent anything real, then many more questions need to be answered. For starters, let’s think about an interpretation of the results of the Stern-Gerlach experiment.

Precession

A spinning charge is a tiny magnet – and so it’s got a magnetic moment, which we need to explain the Stern-Gerlach experiment. But it doesn’t explain the discrete nature of the electron’s angular momentum: it’s either +ħ/2 or -ħ/2, nothing in-between, and that’s the case along any direction we choose. How can we explain this? Also, space is three-dimensional. Why would electrons spin in a perfect plane? The answer is: they don’t.

Indeed, the corollary of the above-mentioned binary value of the angular momentum is that the angular momentum – or the electron’s spin – is never completely along any direction. This may or may not be explained by the precession of a spinning charge in a field, which is illustrated below (illustration taken from Feynman’s Lectures, II-35-3).

Figure 3: Precession of an electron in a magnetic fieldprecession

So we do have an oscillation in three dimensions here, really – even if our wavefunction is a two-dimensional mathematical object. Note that the measurement (or the Stein-Gerlach apparatus in this case) establishes a line of sight and, therefore, a reference frame, so ‘up’ and ‘down’, ‘left’ and ‘right’, and ‘in front’ and ‘behind’ get meaning. In other words, we establish a real space. The question then becomes: how and why does an electron sort of snap into place?

The geometry of the situation suggests the logical angle of the angular momentum vector should be 45°. Now, if the value of its z-component (i.e. its projection on the z-axis) is to be equal to ħ/2, then the magnitude of J itself should be larger. To be precise, it should be equal to ħ/√2 ≈ 0.7·ħ (just apply Pythagoras’ Theorem). Is that value compatible with our flywheel model?

Maybe. Let’s see. The classical formula for the magnetic moment is μ = I·A, with I the (effective) current and A the (surface) area. The notation is confusing because I is also used for the moment of inertia, or rotational mass, but… Well… Let’s do the calculation. The effective current is the electron charge (qe) divided by the period (T) of the orbital revolution: : I = qe/T. The period of the orbit is the time that is needed for the electron to complete one loop. That time (T) is equal to the circumference of the loop (2π·a) divided by the tangential velocity (vt). Now, we suggest vt = r·ω = a·ω = c, and the circumference of the loop is 2π·a. For a, we still use the Compton radius a = ħ/(m·c). Now, the formula for the area is A = π·a2, so we get:

μ = I·A = [qe/T]·π·a2 = [qe·c/(2π·a)]·[π·a2] = [(qe·c)/2]·a = [(qe·c)/2]·[ħ/(m·c)] = [qe/(2m)]·ħ

In a classical analysis, we have the following relation between angular momentum and magnetic moment:

μ = (qe/2m)·J

Hence, we find that the angular momentum J is equal to ħ, so that’s twice the measured value. We’ve got a problem. We would have hoped to find ħ/2 or ħ/√2. Perhaps it’s  because a = ħ/(m·c) is the so-called reduced Compton scattering radius…

Well… No.

Maybe we’ll find the solution one day. I think it’s already quite nice we have a model that’s accurate up to a factor of 1/2 or 1/√2. 😊

Post scriptum: I’ve turned this into a small article which may or may not be more readable. You can link to it here. Comments are more than welcome.

Certainty and uncertainty

A lot of the Uncertainty in quantum mechanics is suspiciously certain. For example, we know an electron will always have its spin up or down, in any direction along which we choose to measure it, and the value of the angular momentum will, accordingly, be measured as plus or minus ħ/2. That doesn’t sound uncertain to me. In fact, it sounds remarkably certain, doesn’t it? We know – we are sure, in fact, because of countless experiments – that the electron will be in either of those two states, and we also know that these two states are separated by ħ, Planck’s quantum of action, exactly.

Of course, the corollary of this is that the idea of the direction of the angular momentum is a rather fuzzy concept. As Feynman convincingly demonstrates, it is ‘never completely along any direction’. Why? Well… Perhaps it can be explained by the idea of precession?

In fact, the idea of precession might also explain the weird 720° degree symmetry of the wavefunction.

Hmm… Now that is an idea to look into ! 🙂

A Survivor’s Guide to Quantum Mechanics?

When modeling electromagnetic waves, the notion of left versus right circular polarization is quite clear and fully integrated in the mathematical treatment. In contrast, quantum math sticks to the very conventional idea that the imaginary unit (i) is – always! – a counter-clockwise rotation by 90 degrees. We all know that –i would do just as an imaginary unit as i, because the definition of the imaginary unit says the only requirement is that its square has to be equal to –1, and (–i)2 is also equal to –1.

So we actually have two imaginary units: i and –i. However, physicists stubbornly think there is only one direction for measuring angles, and that is counter-clockwise. That’s a mathematical convention, Professor: it’s something in your head only. It is not real. Nature doesn’t care about our conventions and, therefore, I feel the spin ‘up’ versus spin ‘down’ should correspond to the two mathematical possibilities: if the ‘up’ state is represented by some complex function, then the ‘down’ state should be represented by its complex conjugate.

This ‘additional’ rule wouldn’t change the basic quantum-mechanical rules – which are written in terms of state vectors in a Hilbert space (and, yes, a Hilbert space is an unreal as it sounds: its rules just say you should separate cats and dogs while adding them – which is very sensible advice, of course). However, they would, most probably (just my intuition – I need to prove it), avoid these crazy 720 degree symmetries which inspire the likes of Penrose to say there is no physical interpretation on the wavefunction.

Oh… As for the title of my post… I think it would be a great title for a book – because I’ll need some space to work it all out. 🙂

Quantum math: garbage in, garbage out?

This post is basically a continuation of my previous one but – as you can see from its title – it is much more aggressive in its language, as I was inspired by a very thoughtful comment on my previous post. Another advantage is that it avoids all of the math. 🙂 It’s… Well… I admit it: it’s just a rant. 🙂 [Those who wouldn’t appreciate the casual style of what follows, can download my paper on it – but that’s much longer and also has a lot more math in it – so it’s a much harder read than this ‘rant’.]

My previous post was actually triggered by an attempt to re-read Feynman’s Lectures on Quantum Mechanics, but in reverse order this time: from the last chapter to the first. [In case you doubt, I did follow the correct logical order when working my way through them for the first time because… Well… There is no other way to get through them otherwise. 🙂 ] But then I was looking at Chapter 20. It’s a Lecture on quantum-mechanical operators – so that’s a topic which, in other textbooks, is usually tackled earlier on. When re-reading it, I realize why people quickly turn away from the topic of physics: it’s a lot of mathematical formulas which are supposed to reflect reality but, in practice, few – if any – of the mathematical concepts are actually being explained. Not in the first chapters of a textbook, not in its middle ones, and… Well… Nowhere, really. Why? Well… To be blunt: I think most physicists themselves don’t really understand what they’re talking about. In fact, as I have pointed out a couple of times already, Feynman himself admits so much:

“Atomic behavior appears peculiar and mysterious to everyone—both to the novice and to the experienced physicist. Even the experts do not understand it the way they would like to.”

So… Well… If you’d be in need of a rather spectacular acknowledgement of the shortcomings of physics as a science, here you have it: if you don’t understand what physicists are trying to tell you, don’t worry about it, because they don’t really understand it themselves. 🙂

Take the example of a physical state, which is represented by a state vector, which we can combine and re-combine using the properties of an abstract Hilbert space. Frankly, I think the word is very misleading, because it actually doesn’t describe an actual physical state. Why? Well… If we look at this so-called physical state from another angle, then we need to transform it using a complicated set of transformation matrices. You’ll say: that’s what we need to do when going from one reference frame to another in classical mechanics as well, isn’t it?

Well… No. In classical mechanics, we’ll describe the physics using geometric vectors in three dimensions and, therefore, the base of our reference frame doesn’t matter: because we’re using real vectors (such as the electric of magnetic field vectors E and B), our orientation vis-á-vis the object – the line of sight, so to speak – doesn’t matter.

In contrast, in quantum mechanics, it does: Schrödinger’s equation – and the wavefunction – has only two degrees of freedom, so to speak: its so-called real and its imaginary dimension. Worse, physicists refuse to give those two dimensions any geometric interpretation. Why? I don’t know. As I show in my previous posts, it would be easy enough, right? We know both dimensions must be perpendicular to each other, so we just need to decide if both of them are going to be perpendicular to our line of sight. That’s it. We’ve only got two possibilities here which – in my humble view – explain why the matter-wave is different from an electromagnetic wave.

I actually can’t quite believe the craziness when it comes to interpreting the wavefunction: we get everything we’d want to know about our particle through these operators (momentum, energy, position, and whatever else you’d need to know), but mainstream physicists still tell us that the wavefunction is, somehow, not representing anything real. It might be because of that weird 720° symmetry – which, as far as I am concerned, confirms that those state vectors are not the right approach: you can’t represent a complex, asymmetrical shape by a ‘flat’ mathematical object!

Huh? Yes. The wavefunction is a ‘flat’ concept: it has two dimensions only, unlike the real vectors physicists use to describe electromagnetic waves (which we may interpret as the wavefunction of the photon). Those have three dimensions, just like the mathematical space we project on events. Because the wavefunction is flat (think of a rotating disk), we have those cumbersome transformation matrices: each time we shift position vis-á-vis the object we’re looking at (das Ding an sich, as Kant would call it), we need to change our description of it. And our description of it – the wavefunction – is all we have, so that’s our reality. However, because that reality changes as per our line of sight, physicists keep saying the wavefunction (or das Ding an sich itself) is, somehow, not real.

Frankly, I do think physicists should take a basic philosophy course: you can’t describe what goes on in three-dimensional space if you’re going to use flat (two-dimensional) concepts, because the objects we’re trying to describe (e.g. non-symmetrical electron orbitals) aren’t flat. Let me quote one of Feynman’s famous lines on philosophers: “These philosophers are always with us, struggling in the periphery to try to tell us something, but they never really understand the subtleties and depth of the problem.” (Feynman’s Lectures, Vol. I, Chapter 16)

Now, I love Feynman’s Lectures but… Well… I’ve gone through them a couple of times now, so I do think I have an appreciation of the subtleties and depth of the problem now. And I tend to agree with some of the smarter philosophers: if you’re going to use ‘flat’ mathematical objects to describe three- or four-dimensional reality, then such approach will only get you where we are right now, and that’s a lot of mathematical mumbo-jumbo for the poor uninitiated. Consistent mumbo-jumbo, for sure, but mumbo-jumbo nevertheless. 🙂 So, yes, I do think we need to re-invent quantum math. 🙂 The description may look more complicated, but it would make more sense.

I mean… If physicists themselves have had continued discussions on the reality of the wavefunction for almost a hundred years now (Schrödinger published his equation in 1926), then… Well… Then the physicists have a problem. Not the philosophers. 🙂 As to how that new description might look like, see my papers on viXra.org. I firmly believe it can be done. This is just a hobby of mine, but… Well… That’s where my attention will go over the coming years. 🙂 Perhaps quaternions are the answer but… Well… I don’t think so either – for reasons I’ll explain later. 🙂

Post scriptum: There are many nice videos on Dirac’s belt trick or, more generally, on 720° symmetries, but this links to one I particularly like. It clearly shows that the 720° symmetry requires, in effect, a special relation between the observer and the object that is being observed. It is, effectively, like there is a leather belt between them or, in this case, we have an arm between the glass and the person who is holding the glass. So it’s not like we are walking around the object (think of the glass of water) and making a full turn around it, so as to get back to where we were. No. We are turning it around by 360°! That’s a very different thing than just looking at it, walking around it, and then looking at it again. That explains the 720° symmetry: we need to turn it around twice to get it back to its original state. So… Well… The description is more about us and what we do with the object than about the object itself. That’s why I think the quantum-mechanical description is defective.

Should we reinvent wavefunction math?

Preliminary note: This post may cause brain damage. 🙂 If you haven’t worked yourself through a good introduction to physics – including the math – you will probably not understand what this is about. So… Well… Sorry. 😦 But if you have… Then this should be very interesting. Let’s go. 🙂

If you know one or two things about quantum math – Schrödinger’s equation and all that – then you’ll agree the math is anything but straightforward. Personally, I find the most annoying thing about wavefunction math are those transformation matrices: every time we look at the same thing from a different direction, we need to transform the wavefunction using one or more rotation matrices – and that gets quite complicated !

Now, if you have read any of my posts on this or my other blog, then you know I firmly believe the wavefunction represents something real or… Well… Perhaps it’s just the next best thing to reality: we cannot know das Ding an sich, but the wavefunction gives us everything we would want to know about it (linear or angular momentum, energy, and whatever else we have an operator for). So what am I thinking of? Let me first quote Feynman’s summary interpretation of Schrödinger’s equation (Lectures, III-16-1):

“We can think of Schrödinger’s equation as describing the diffusion of the probability amplitude from one point to the next. […] But the imaginary coefficient in front of the derivative makes the behavior completely different from the ordinary diffusion such as you would have for a gas spreading out along a thin tube. Ordinary diffusion gives rise to real exponential solutions, whereas the solutions of Schrödinger’s equation are complex waves.”

Feynman further formalizes this in his Lecture on Superconductivity (Feynman, III-21-2), in which he refers to Schrödinger’s equation as the “equation for continuity of probabilities”. His analysis there is centered on the local conservation of energy, which makes me think Schrödinger’s equation might be an energy diffusion equation. I’ve written about this ad nauseam in the past, and so I’ll just refer you to one of my papers here for the details, and limit this post to the basics, which are as follows.

The wave equation (so that’s Schrödinger’s equation in its non-relativistic form, which is an approximation that is good enough) is written as:formula 1The resemblance with the standard diffusion equation (shown below) is, effectively, very obvious:formula 2As Feynman notes, it’s just that imaginary coefficient that makes the behavior quite different. How exactly? Well… You know we get all of those complicated electron orbitals (i.e. the various wave functions that satisfy the equation) out of Schrödinger’s differential equation. We can think of these solutions as (complex) standing waves. They basically represent some equilibrium situation, and the main characteristic of each is their energy level. I won’t dwell on this because – as mentioned above – I assume you master the math. Now, you know that – if we would want to interpret these wavefunctions as something real (which is surely what want to do!) – the real and imaginary component of a wavefunction will be perpendicular to each other. Let me copy the animation for the elementary wavefunction ψ(θ) = a·ei∙θ = a·ei∙(E/ħ)·t = a·cos[(E/ħ)∙t]  i·a·sin[(E/ħ)∙t] once more:

Circle_cos_sin

So… Well… That 90° angle makes me think of the similarity with the mathematical description of an electromagnetic wave. Let me quickly show you why. For a particle moving in free space – with no external force fields acting on it – there is no potential (U = 0) and, therefore, the Vψ term – which is just the equivalent of the the sink or source term S in the diffusion equation – disappears. Therefore, Schrödinger’s equation reduces to:

∂ψ(x, t)/∂t = i·(1/2)·(ħ/meff)·∇2ψ(x, t)

Now, the key difference with the diffusion equation – let me write it for you once again: ∂φ(x, t)/∂t = D·∇2φ(x, t) – is that Schrödinger’s equation gives us two equations for the price of one. Indeed, because ψ is a complex-valued function, with a real and an imaginary part, we get the following equations:

  1. Re(∂ψ/∂t) = −(1/2)·(ħ/meffIm(∇2ψ)
  2. Im(∂ψ/∂t) = (1/2)·(ħ/meffRe(∇2ψ)

Huh? Yes. These equations are easily derived from noting that two complex numbers a + i∙b and c + i∙d are equal if, and only if, their real and imaginary parts are the same. Now, the ∂ψ/∂t = i∙(ħ/meff)∙∇2ψ equation amounts to writing something like this: a + i∙b = i∙(c + i∙d). Now, remembering that i2 = −1, you can easily figure out that i∙(c + i∙d) = i∙c + i2∙d = − d + i∙c. [Now that we’re getting a bit technical, let me note that the meff is the effective mass of the particle, which depends on the medium. For example, an electron traveling in a solid (a transistor, for example) will have a different effective mass than in an atom. In free space, we can drop the subscript and just write meff = m.] 🙂 OK. Onwards ! 🙂

The equations above make me think of the equations for an electromagnetic wave in free space (no stationary charges or currents):

  1. B/∂t = –∇×E
  2. E/∂t = c2∇×B

Now, these equations – and, I must therefore assume, the other equations above as well – effectively describe a propagation mechanism in spacetime, as illustrated below:

propagation

You know how it works for the electromagnetic field: it’s the interplay between circulation and flux. Indeed, circulation around some axis of rotation creates a flux in a direction perpendicular to it, and that flux causes this, and then that, and it all goes round and round and round. 🙂 Something like that. 🙂 I will let you look up how it goes, exactly. The principle is clear enough. Somehow, in this beautiful interplay between linear and circular motion, energy is borrowed from one place and then returns to the other, cycle after cycle.

Now, we know the wavefunction consist of a sine and a cosine: the cosine is the real component, and the sine is the imaginary component. Could they be equally real? Could each represent half of the total energy of our particle? I firmly believe they do. The obvious question then is the following: why wouldn’t we represent them as vectors, just like E and B? I mean… Representing them as vectors (I mean real vectors here – something with a magnitude and a direction in a real space – as opposed to state vectors from the Hilbert space) would show they are real, and there would be no need for cumbersome transformations when going from one representational base to another. In fact, that’s why vector notation was invented (sort of): we don’t need to worry about the coordinate frame. It’s much easier to write physical laws in vector notation because… Well… They’re the real thing, aren’t they? 🙂

What about dimensions? Well… I am not sure. However, because we are – arguably – talking about some pointlike charge moving around in those oscillating fields, I would suspect the dimension of the real and imaginary component of the wavefunction will be the same as that of the electric and magnetic field vectors E and B. We may want to recall these:

  1. E is measured in newton per coulomb (N/C).
  2. B is measured in newton per coulomb divided by m/s, so that’s (N/C)/(m/s).

The weird dimension of B is because of the weird force law for the magnetic force. It involves a vector cross product, as shown by Lorentz’ formula:

F = qE + q(v×B)

Of course, it is only one force (one and the same physical reality), as evidenced by the fact that we can write B as the following vector cross-product: B = (1/c)∙ex×E, with ex the unit vector pointing in the x-direction (i.e. the direction of propagation of the wave). [Check it, because you may not have seen this expression before. Just take a piece of paper and think about the geometry of the situation.] Hence, we may associate the (1/c)∙ex× operator, which amounts to a rotation by 90 degrees, with the s/m dimension. Now, multiplication by i also amounts to a rotation by 90° degrees. Hence, if we can agree on a suitable convention for the direction of rotation here, we may boldly write:

B = (1/c)∙ex×E = (1/c)∙iE

This is, in fact, what triggered my geometric interpretation of Schrödinger’s equation about a year ago now. I have had little time to work on it, but think I am on the right track. Of course, you should note that, for an electromagnetic wave, the magnitudes of E and B reach their maximum, minimum and zero point simultaneously (as shown below). So their phase is the same.

E and B

In contrast, the phase of the real and imaginary component of the wavefunction is not the same, as shown below.wavefunction

In fact, because of the Stern-Gerlach experiment, I am actually more thinking of a motion like this:

Wavefunction 2But that shouldn’t distract you. 🙂 The question here is the following: could we possibly think of a new formulation of Schrödinger’s equation – using vectors (again, real vectors – not these weird state vectors) rather than complex algebra?

I think we can, but then I wonder why the inventors of the wavefunction – Heisenberg, Born, Dirac, and Schrödinger himself, of course – never thought of that. 🙂

Hmm… I need to do some research here. 🙂

Post scriptum: You will, of course, wonder how and why the matter-wave would be different from the electromagnetic wave if my suggestion that the dimension of the wavefunction component is the same is correct. The answer is: the difference lies in the phase difference and then, most probably, the different orientation of the angular momentum. Do we have any other possibilities? 🙂

P.S. 2: I also published this post on my new blog: https://readingeinstein.blog/. However, I thought the followers of this blog should get it first. 🙂

Looking back…

Well… I think this is it, folks ! With my last posts on superconductivity, I think I am done. I’ve gone through all of the Lectures and it’s been a amazing adventure.

Looking back at it, I’d say: there is really no substitute for buying these Lectures yourself, and just grind through it. The only thing this blog really does is, perhaps, raise a question here and there – or help with figuring something out. But then… Well… If I can do it, you can do it. Don’t go for other sources if you can go for the original writings ! Read a classic rather than yet another second-hand or half-cooked thing !

I should also note that I started off using the print copy of Feynman’s Lectures but, at this point, I realize I should really acknowledge the incredible effort of two extraordinary people: Michael Gottlieb and Rudolf Pfeiffer, who have worked for decades to get those Lectures online. I borrowed a lot of stuff from it. In fact, in the coming weeks and months, I want to make sure I duly acknowledge that for all of the illustrations and quotes I’ve used, and if I haven’t been paraphrasing a bit too much, but… Well… That will be quite an effort. These two extraordinary guys also created a website for these Lectures which offers many more resources. That makes it accessible to all and everyone.

However, let me repeat: there is no substitute for buying the Lectures yourself, and grinding through it yourself. I wish you all the best on this journey. It’s been a nice journey for me, and I am therefore pretty sure you’ll enjoy it at least as much as I did.

Jean Louis Van Belle, 26 February 2018

Post scriptum: The material I have copied and republished from this wonderful online edition of Gottlieb and Pfeiffer is under copyright. The site mentions that, without explicit permission, only some limited copying is permitted under Fair Use laws, for non-commercial publications (which this blog surely is), and with proper attribution. I realize that, despite my best efforts to provide hyperlinks to the Lectures themselves whenever I’d borrow from them, I should probably go through it all to make sure that’s effectively the case. If I have been lacking in this regard, it was surely not intentional.

Superconductivity and flux quantization

This post continues my mini-series on Feynman’s Seminar on Superconductivity. Superconductivity is a state which produces many wondrous phenomena, but… Well… The flux quantization phenomenon may not be part of your regular YouTube feed but, as far as I am concerned, it may well be the most amazing manifestation of a quantum-mechanical phenomenon at a macroscopic scale. I mean… Super currents that keep going, with zero resistance, are weird—they explain how we can trap a magnetic flux in the first place—but the fact that such fluxes are quantized is even weirder.

The key idea is the following. When we cool a ring-shaped piece of superconducting material in a magnetic field, all the way down to the critical temperature that causes the electrons to condense into a superconducting fluid, then a super current will emerge—think of an eddy current, here, but with zero resistance—that will force the magnetic field out of the material, as shown below. This current will permanently trap some of the magnetic field, even when the external field is being removed. As said, that’s weird enough by itself but… Well… If we think of the super current as an eddy current encountering zero resistance, then the idea of a permanently trapped magnetic field makes sense, right? In case you’d doubt the effect… Well… Just watch one of the many videos on the effect on YouTube. 🙂 The amazing thing here is not the permanently trapped magnetic field, but the fact that it’s quantized.

trapped flux

To be precise, the trapped flux will always be an integer times 2πħ/q. In other words, the magnetic field which Feynman denotes by Φ (the capitalized Greek letter phi), will always be equal to:

Φ = 2πħ/q, with = 0, 1, 2, 3,…

Hence, the flux can be 0, 2πħ/q, 4πħ/q, 6πħ/q , and so on. The fact that it’s a multiple of 2π shows us it’s got to do with the fact that our piece of material is, effectively, a ring. The nice thing about this phenomenon is that the mathematical analysis is, in fact, fairly easy to follow—or… Well… Much easier than what we discussed before. 🙂 Let’s quickly go through it.

We have a formula for the magnetic flux. It must be equal to the line integral of the vector potential (A) around a closed loop Τ, so we write:

flux

Now, we can choose the loop Τ to be well inside the body of the ring, so that it never gets near the surface, as illustrated below. So we know that the current J is zero there. [In case you doubt this, see my previous post.]

curve

One of the equations we introduced in our previous post, ħθ = m·v + q·A, will then reduce to:

ħθ = q·A

Why? The v in the m·v term (the velocity of the superconducting fluid, really), is zero. Remember the analysis is for this particular loop (well inside the ring) only. So… Well… If we integrate the expression above, we get:

integral

Combining the two expressions with the integrals, we get:

integral 2Now, the line integral of a gradient from one point to another (say from point 1 to point 2) is the difference of the values of the function at the two points, so we can write:

integral 3

Now what constraints are there on the values of θ1 and θ2? Well… You might think that, if they’re associated with the same point (we’re talking a closed loop, right?), then the two values should be the same, but… Well… No. All we can say is that the wavefunction must have the same value. We wrote that wavefunction as:

ψ = ρ(r)1/2eθ(r)

The value of this function at some point r is the same if θ changes by 2π. Hence, when doing one complete turn around the ring, the ∫∇θ·ds integral in the integral formulas we wrote down must be equal to 2π. Therefore, the second integral expression above can be re-written as:

result

That’s the result we wanted to explain so… Well… We’re done. Let me wrap up by quoting Feynman’s account of the 1961 experiment which confirmed London’s prediction of the effect, which goes back to 1950! It’s interesting, because… Well… It shows how up to date Feynman’s Lectures really are—or were, back in 1963, at least!feynman overview of experiment

Feynman’s Seminar on Superconductivity (2)

We didn’t get very far in our first post on Feynman’s Seminar on Superconductivity, and then I shifted my attention to other subjects over the past few months. So… Well… Let me re-visit the topic here.

One of the difficulties one encounters when trying to read this so-called seminar—which, according to Feynman, is ‘for entertainment only’ and, therefore, not really part of the Lectures themselves—is that Feynman throws in a lot of stuff that is not all that relevant to the topic itself but… Well… He apparently didn’t manage to throw all that he wanted to throw into his (other) Lectures on Quantum Mechanics and so he inserted a lot of stuff which he could, perhaps, have discussed elsewhere. :-/ So let us try to re-construct the main lines of reasoning here.

The first equation is Schrödinger’s equation for some particle with charge q that is moving in an electromagnetic field that is characterized not only by the (scalar) potential Φ but also by a vector potential A:

schrodinger

This closely resembles Schrödinger’s equation for an electron that is moving in an electric field only, which we used to find the energy states of electrons in a hydrogen atom: i·ħ·∂ψ/∂t = −(1/2)·(ħ2/m)∇2ψ + V·ψ. We just need to note the following:

  1. On the left-hand side, we can, obviously, replace −1/i by i.
  2. On the right-hand side, we can replace V by q·Φ, because the potential of a charge in an electric field is the product of the charge (q) and the (electric) potential (Φ).
  3. As for the other term on the right-hand side—so that’s the −(1/2)·(ħ2/m)∇2ψ term—we can re-write −ħ2·∇2ψ as [(ħ/i)·∇]·[(ħ/i)·∇]ψ because (1/i)·(1/i) = 1/i2 = 1/(−1) = −1. 🙂
  4. So all that’s left now, is that additional −q·A term in the (ħ/i)∇ − q·A expression. In our post, we showed that’s easily explained because we’re talking magnetodynamics: we’ve got to allow for the possibility of changing magnetic fields, and so that’s what the −q·A term captures.

Now, the latter point is not so easy to grasp but… Well… I’ll refer you that first post of mine, in which I show that some charge in a changing magnetic field will effectively gather some extra momentum, whose magnitude will be equal to p = m·v = −q·A. So that’s why we need to introduce another momentum operator here, which we write as:

new-momentum-operator

OK. Next. But… Then… Well… All of what follows are either digressions—like the section on the local conservation of probabilities—or, else, quite intuitive arguments. Indeed, Feynman does not give us the nitty-gritty of the Bardeen-Cooper-Schrieffer theory, nor is the rest of the argument nearly as rigorous as the derivation of the electron orbitals from Schrödinger’s equation in an electrostatic field. So let us closely stick to what he does write, and try our best to follow the arguments.

Cooper pairs

The key assumption is that there is some attraction between electrons which, at low enough temperatures, can overcome the Coulomb repulsion. Where does this attraction come from? Feynman does not give us any clues here. He just makes a reference to the BCS theory but notes this theory is “not the subject of this seminar”, and that we should just “accept the idea that the electrons do, in some manner or other, work in pairs”, and that “we can think of thos−e pairs as behaving more or less like particles”, and that “we can, therefore, talk about the wavefunction for a pair.”

So we have a new particle, so to speak, which consists of two electrons who move through the conductor as one. To be precise, the electron pair behaves as a boson. Now, bosons have integer spin. According to the spin addition rule, we have four possibilities here but only three possible values:− 1/2 + 1/2 = 1; −1/2 + 1/2 = 0; +1/2 − 1/2 = 0; −1/2 − 1/2 = − 1. Of course, it is tempting to think these Cooper pairs are just like the electron pairs in the atomic orbitals, whose spin is always opposite because of the Fermi exclusion principle. Feynman doesn’t say anything about this, but the Wikipedia article on the BCS theory notes that the two electrons in a Cooper pair are, effectively, correlated because of their opposite spin. Hence, we must assume the Cooper pairs effectively behave like spin-zero particles.

Now, unlike fermions, bosons can collectively share the same energy state. In fact, they are likely to share the same state into what is referred to as a Bose-Einstein condensate. As Feynman puts it: “Since electron pairs are bosons, when there are a lot of them in a given state there is an especially large amplitude for other pairs to go to the same state. So nearly all of the pairs will be locked down at the lowest energy in exactly the same state—it won’t be easy to get one of them into another state. There’s more amplitude to go into the same state than into an unoccupied state by the famous factor √n, where n−1 is the occupancy of the lowest state. So we would expect all the pairs to be moving in the same state.”

Of course, this only happens at very low temperatures, because even if the thermal energy is very low, it will give the electrons sufficient energy to ensure the attractive force is overcome and all pairs are broken up. It is only at very low temperature that they will pair up and go into a Bose-Einstein condensate. Now, Feynman derives this √n factor in a rather abstruse introductory Lecture in the third volume, and I’d advise you to google other material on Bose-Einstein statistics because… Well… The mentioned Lecture is not among Feynman’s finest. OK. Next step.

Cooper pairs and wavefunctions

We know the probability of finding a Cooper pair is equal to the absolute square of its wavefunction. Now, it is very reasonable to assume that this probability will be proportional to the charge density (ρ), so we can write:

|ψ|= ψψ* ∼ ρ(r)

The argument here (r) is just the position vector. The next step, then, is to write ψ as the square root of ρ(r) times some phase factor θ. Abstracting away from time, this phase factor will also depend on r, of course. So this is what Feynman writes:

ψ = ρ(r)1/2eθ(r)

As Feynman notes, we can write any complex function of r like this but… Well… The charge density is, obviously, something real. Something we can measure, so we’re not writing the obvious here. The next step is even less obvious.

In our first post, we spent quite some time on Feynman’s digression on the local conservation of probability and… Well… I wrote above I didn’t think this digression was very useful. It now turns out it’s a central piece in the puzzle that Feynman is trying to solve for us here. The key formula here is the one for the so-called probability current, which—as Feynman shows—we write as:

probability-current-2

This current J can also be written as:

probability-current-1

Now, Feynman skips all of the math here (he notes “it’s just a change of variables” but so he doesn’t want to go through all of the algebra), and so I’ll just believe him when he says that, when substituting ψ for our wavefunction ψ = ρ(r)1/2eθ(r), then we can express this ‘current’ (J) in terms of ρ and θ. To be precise, he writes J as: current formulaSo what? Well… It’s really fascinating to see what happens next. While J was some rather abstract concept so far—what’s a probability current, really?—Feynman now suggests we may want to think of it as a very classical electric current—the charge density times the velocity of the fluid of electrons. Hence, we equate J to J =  ρ·v. Now, if the equation above holds true, but J is also equal to J = ρ·v, then the equation above is equivalent to:

moment

Now, that gives us a formula for ħθ. We write:

ħθ = m·v + q·A

Now, in my previous post on this Seminar, I noted that Feynman attaches a lot of importance to this m·v + q·A quantity because… Well… It’s actually an invariant quantity. The argument can be, very briefly, summarized as follows. During the build-up of (or a change in) a magnetic flux, a charge will pick up some (classical) momentum that is equal to p = m·v = −q·A. Hence, the m·v + q·A sum is zero, and so… Well… That’s it, really: it’s some quantity that… Well… It has a significance in quantum mechanics. What significance? Well… Think of what we’ve been writing here. The v and the A have a physical significance, obviously. Therefore, that phase factor θ(r) must also have a physical significance.

But the question remains: what physical significance, exactly? Well… Let me quote Feynman here:

“The phase is just as observable as the charge density ρ. It is a piece of the current density J. The absolute phase (θ) is not observable, but if the gradient of the phase (θ) is known everywhere, then the phase is known except for a constant. You can define the phase at one point, and then the phase everywhere is determined.”

That makes sense, doesn’t it? But it still doesn’t quite answer the question: what is the physical significance of θ(r). What is it, really? We may be able to answer that question after exploring the equations above a bit more, so let’s do that now.

Superconductivity

The phenomenon of superconductivity itself is easily explained by the mentioned condensation of the Cooper pairs: they all go into the same energy state. They form, effectively, a superconducting fluid. Feynman’s description of this is as follows:

“There is no electrical resistance. There’s no resistance because all the electrons are collectively in the same state. In the ordinary flow of current you knock one electron or the other out of the regular flow, gradually deteriorating the general momentum. But here to get one electron away from what all the others are doing is very hard because of the tendency of all Bose particles to go in the same state. A current once started, just keeps on going forever.”

Frankly, I’ve re-read this a couple of times, but I don’t think it’s the best description of what we think is going on here. I’d rather compare the situation to… Well… Electrons moving around in an electron orbital. That’s doesn’t involve any radiation or energy transfer either. There’s just movement. Flow. The kind of flow we have in the wavefunction itself. Here I think the video on Bose-Einstein condensates on the French Tout est quantique site is quite instructive: all of the Cooper pairs join to become one giant wavefunction—one superconducting fluid, really. 🙂

OK… Next.

The Meissner effect

Feynman describes the Meissner effect as follows:

“If you have a piece of metal in the superconducting state and turn on a magnetic field which isn’t too strong (we won’t go into the details of how strong), the magnetic field can’t penetrate the metal. If, as you build up the magnetic field, any of it were to build up inside the metal, there would be a rate of change of flux which would produce an electric field, and an electric field would immediately generate a current which, by Lenz’s law, would oppose the flux. Since all the electrons will move together, an infinitesimal electric field will generate enough current to oppose completely any applied magnetic field. So if you turn the field on after you’ve cooled a metal to the superconducting state, it will be excluded.

Even more interesting is a related phenomenon discovered experimentally by Meissner. If you have a piece of the metal at a high temperature (so that it is a normal conductor) and establish a magnetic field through it, and then you lower the temperature below the critical temperature (where the metal becomes a superconductor), the field is expelled. In other words, it starts up its own current—and in just the right amount to push the field out.”

The math here is interesting. Feynman first notes that, in any lump of superconducting metal, the divergence of the current must be zero, so we write:  ∇·J = 0. At any point? Yes. The current that goes in must go out. No point is a sink or a source. Now the divergence operator (∇·J) is a linear operator. Hence, that means that, when applying the divergence operator to the J = (ħ/m)·[θ − (q/ħ)·A]·ρ equation, we’ll need to figure out what ∇·θ =   = ∇2θ and ∇·A are. Now, as explained in my post on gauges, we can choose to make ∇·A equal to zero so… Well… We’ll make that choice and, hence, the term with ∇·A in it vanishes. So… Well… If ∇·J equals zero, then the term with ∇2θ has to be zero as well, so ∇2θ has to be zero. That, in turn, implies θ has to be some constant (vector).

Now, there is a pretty big error in Feynman’s Lecture here, as it notes: “Now the only way that ∇2θ can be zero everywhere inside the lump of metal is for θ to be a constant.” It should read: ∇2θ can only be zero everywhere if θ is a constant (vector). So now we need to remind ourselves of the reality of θ, as described by Feynman (quoted above): “The absolute phase (θ) is not observable, but if the gradient of the phase (θ) is known everywhere, then the phase is known except for a constant. You can define the phase at one point, and then the phase everywhere is determined.” So we can define, or choose, our constant (vector) θ to be 0.

Hmm… We re-set not one but two gauges here: A and θ. Tricky business, but let’s go along with it. [If we want to understand Feynman’s argument, then we actually have no choice than to go long with his argument, right?] The point is: the (ħ/m)·θ term in the J = (ħ/m)·[θ − (q/ħ)·A]·ρ vanishes, so the equation we’re left with tells us the current—so that’s an actual as well as a probability current!—is proportional to the vector potential:

currentNow, we’ve neglected any possible variation in the charge density ρ so far because… Well… The charge density in a superconducting fluid must be uniform, right? Why? When the metal is superconducting, an accumulation of electrons in one region would be immediately neutralized by a current, right? [Note that Feynman’s language is more careful here. He writes: the charge density is almost perfectly uniform.]

So what’s next? Well… We have a more general equation from the equations of electromagnetism:

A and J

[In case you’d want to know how we get this equation out of Maxwell’s equations, you can look it up online in one of the many standard textbooks on electromagnetism.] You recognize this as a Poisson equation… Well… Three Poisson equations: one for each component of A and J. We can now combine the two equations above by substituting in that Poisson equation, so we get the following differential equation, which we need to solve for A:

A

The λ2 in this equation is, of course, a shorthand for the following constant:

lambda

Now, it’s very easy to see that both e−λr as well as e−λr are solutions for that Poisson equation. But what do they mean? In one dimension, r becomes the one-dimensional position variable x. You can check the shapes of these solutions with a graphing tool.

graph

Note that only one half of each graph counts: the vector potential must decrease when we go from the surface into the material, and there is a cut-off at the surface of the material itself, of course. So all depends on the size of λ, as compared to the size of our piece of superconducting metal (or whatever other substance our piece is made of). In fact, if we look at e−λx as as an exponential decay function, then τ = 1/λ is the so-called scaling constant (it’s the inverse of the decay constant, which is λ itself). [You can work this out yourself. Note that for = τ = 1/λ, the value of our function e−λx will be equal to e−λ(1/λ) = e−1 ≈ 0.368, so it means the value of our function is reduced to about 36.8% of its initial value. For all practical purposes, we may say—as Feynman notes—that the field will, effectively, only penetrate to a thin layer at the surface: a layer of about 1/1/λ in thickness. He illustrates this as follows:

illustration

Moreover, he calculates the 1/λ distance for lead. Let me copy him here:

calculation

Well… That says it all, right? We’re talking two millionths of a centimeter here… 🙂

So what’s left? A lot, like flux quantization, or the equations of motion for the superconducting electron fluid. But we’ll leave that for the next posts. 🙂

Wavefunctions and the twin paradox

My previous post was awfully long, so I must assume many of my readers may have started to read it, but… Well… Gave up halfway or even sooner. 🙂 I added a footnote, though, which is interesting to reflect upon. Also, I know many of my readers aren’t interested in the math—even if they understand one cannot really appreciate quantum theory without the math. But… Yes. I may have left some readers behind. Let me, therefore, pick up the most interesting bit of all of the stories in my last posts in as easy a language as I can find.

We have that weird 360/720° symmetry in quantum physics or—to be precise—we have it for elementary matter-particles (think of electrons, for example). In order to, hopefully, help you understand what it’s all about, I had to explain the often-confused but substantially different concepts of a reference frame and a representational base (or representation tout court). I won’t repeat that explanation, but think of the following.

If we just rotate the reference frame over 360°, we’re just using the same reference frame and so we see the same thing: some object which we, vaguely, describe by some ei·θ function. Think of some spinning object. In its own reference frame, it will just spin around some center or, in ours, it will spin while moving along some axis in its own reference frame or, seen from ours, as moving in some direction while it’s spinning—as illustrated below.

To be precise, I should say that we describe it by some Fourier sum of such functions. Now, if its spin direction is… Well… In the other direction, then we’ll describe it by by some ei·θ function (again, you should read: a Fourier sum of such functions). Now, the weird thing is is the following: if we rotate the object itself, over the same 360°, we get a different object: our ei·θ and ei·θ function (again: think of a Fourier sum, so that’s a wave packet, really) becomes a −e±i·θ thing. We get a minus sign in front of it. So what happened here? What’s the difference, really?

Well… I don’t know. It’s very deep. Think of you and me as two electrons who are watching each other. If I do nothing, and you keep watching me while turning around me, for a full 360° (so that’s a rotation of your reference frame over 360°), then you’ll end up where you were when you started and, importantly, you’ll see the same thing: me. 🙂 I mean… You’ll see exactly the same thing: if I was an e+i·θ wave packet, I am still an an e+i·θ wave packet now. Or if I was an ei·θ wave packet, then I am still an an ei·θ wave packet now. Easy. Logical. Obvious, right?

But so now we try something different: turn around, over a full 360° turn, and you stay where you are and watch me while I am turning around. What happens? Classically, nothing should happen but… Well… This is the weird world of quantum mechanics: when I am back where I was—looking at you again, so to speak—then… Well… I am not quite the same any more. Or… Well… Perhaps I am but you see me differently. If I was e+i·θ wave packet, then I’ve become a −e+i·θ wave packet now.

Not hugely different but… Well… That minus sign matters, right? Or If I was wave packet built up from elementary a·ei·θ waves, then I’ve become a −ei·θ wave packet now. What happened?

It makes me think of the twin paradox in special relativity. We know it’s a paradox—so that’s an apparent contradiction only: we know which twin stayed on Earth and which one traveled because of the gravitational forces on the traveling twin. The one who stays on Earth does not experience any acceleration or deceleration. Is it the same here? I mean… The one who’s turning around must experience some force.

Can we relate this to the twin paradox? Maybe. Note that a minus sign in front of the e−±i·θ functions amounts a minus sign in front of both the sine and cosine components. So… Well… The negative of a sine and cosine is the sine and cosine but with a phase shift of 180°: −cosθ = cos(θ ± π) and −sinθ = sin(θ ± π). Now, adding or subtracting a common phase factor to/from the argument of the wavefunction amounts to changing the origin of time. So… Well… I do think the twin paradox and this rather weird business of 360° and 720° symmetries are, effectively, related. 🙂

Post scriptumGoogle honors Max Born’s 135th birthday today. 🙂 I think that’s a great coincidence in light of the stuff I’ve been writing about lately (possible interpretations of the wavefunction). 🙂

Wavefunctions, perspectives, reference frames, representations and symmetries

Ouff ! This title is quite a mouthful, isn’t it? 🙂 So… What’s the topic of the day? Well… In our previous posts, we developed a few key ideas in regard to a possible physical interpretation of the (elementary) wavefunction. It’s been an interesting excursion, and I summarized it in another pre-publication paper on the open arXiv.org site.

In my humble view, one of the toughest issues to deal with when thinking about geometric (or physical) interpretations of the wavefunction is the fact that a wavefunction does not seem to obey the classical 360° symmetry in space. In this post, I want to muse a bit about this and show that… Well… It does and it doesn’t. It’s got to do with what happens when you change from one representational base (or representation, tout court) to another which is… Well… Like changing the reference frame but, at the same time, it is also more than just a change of the reference frame—and so that explains the weird stuff (like that 720° symmetry of the amplitudes for spin-1/2 particles, for example).

I should warn you before you start reading: I’ll basically just pick up some statements from my paper (and previous posts) and develop some more thoughts on them. As a result, this post may not be very well structured. Hence, you may want to read the mentioned paper first.

The reality of directions

Huh? The reality of directions? Yes. I warned you. This post may cause brain damage. 🙂 The whole argument revolves around a thought experiment—but one whose results have been verified in zillions of experiments in university student labs so… Well… We do not doubt the results and, therefore, we do not doubt the basic mathematical results: we just want to try to understand them better.

So what is the set-up? Well… In the illustration below (Feynman, III, 6-3), Feynman compares the physics of two situations involving rather special beam splitters. Feynman calls them modified or ‘improved’ Stern-Gerlach apparatuses. The apparatus basically splits and then re-combines the two new beams along the z-axis. It is also possible to block one of the beams, so we filter out only particles with their spin up or, alternatively, with their spin down. Spin (or angular momentum or the magnetic moment) as measured along the z-axis, of course—I should immediately add: we’re talking the z-axis of the apparatus here.

rotation about z

The two situations involve a different relative orientation of the apparatuses: in (a), the angle is 0°, while in (b) we have a (right-handed) rotation of 90° about the z-axis. He then proves—using geometry and logic only—that the probabilities and, therefore, the magnitudes of the amplitudes (denoted by C+ and C and C’+ and C’ in the S and T representation respectively) must be the same, but the amplitudes must have different phases, noting—in his typical style, mixing academic and colloquial language—that “there must be some way for a particle to tell that it has turned a corner in (b).”

The various interpretations of what actually happens here may shed some light on the heated discussions on the reality of the wavefunction—and of quantum states. In fact, I should note that Feynman’s argument revolves around quantum states. To be precise, the analysis is focused on two-state systems only, and the wavefunction—which captures a continuum of possible states, so to speak—is introduced only later. However, we may look at the amplitude for a particle to be in the up– or down-state as a wavefunction and, therefore (but do note that’s my humble opinion once more), the analysis is actually not all that different.

We know, from theory and experiment, that the amplitudes are different. For example, for the given difference in the relative orientation of the two apparatuses (90°), we know that the amplitudes are given by C’+ = ei∙φ/2C+ = e i∙π/4C+ and C’ = ei∙φ/2C+ = e i∙π/4C respectively (the amplitude to go from the down to the up state, or vice versa, is zero). Hence, yes, wenot the particle, Mr. Feynman!—know that, in (b), the electron has, effectively, turned a corner.

The more subtle question here is the following: is the reality of the particle in the two setups the same? Feynman, of course, stays away from such philosophical question. He just notes that, while “(a) and (b) are different”, “the probabilities are the same”. He refrains from making any statement on the particle itself: is or is it not the same? The common sense answer is obvious: of course, it is! The particle is the same, right? In (b), it just took a turn—so it is just going in some other direction. That’s all.

However, common sense is seldom a good guide when thinking about quantum-mechanical realities. Also, from a more philosophical point of view, one may argue that the reality of the particle is not the same: something might—or must—have happened to the electron because, when everything is said and done, the particle did take a turn in (b). It did not in (a). [Note that the difference between ‘might’ and ‘must’ in the previous phrase may well sum up the difference between a deterministic and a non-deterministic world view but… Well… This discussion is going to be way too philosophical already, so let’s refrain from inserting new language here.]

Let us think this through. The (a) and (b) set-up are, obviously, different but… Wait a minute… Nothing is obvious in quantum mechanics, right? How can we experimentally confirm that they are different?

Huh? I must be joking, right? You can see they are different, right? No. I am not joking. In physics, two things are different if we get different measurement results. [That’s a bit of a simplified view of the ontological point of view of mainstream physicists, but you will have to admit I am not far off.] So… Well… We can’t see those amplitudes and so… Well… If we measure the same thing—same probabilities, remember?—why are they different? Think of this: if we look at the two beam splitters as one single tube (an ST tube, we might say), then all we did in (b) was bend the tube. Pursuing the logic that says our particle is still the same even when it takes a turn, we could say the tube is still the same, despite us having wrenched it over a 90° corner.

Now, I am sure you think I’ve just gone nuts, but just try to stick with me a little bit longer. Feynman actually acknowledges the same: we need to experimentally prove (a) and (b) are different. He does so by getting third apparatus in (U), as shown below, whose relative orientation to T is the same in both (a) and (b), so there is no difference there.

third apparatus

Now, the axis of is not the z-axis: it is the x-axis in (a), and the y-axis in (b). So what? Well… I will quote Feynman here—not (only) because his words are more important than mine but also because every word matters here:

“The two apparatuses in (a) and (b) are, in fact, different, as we can see in the following way. Suppose that we put an apparatus in front of which produces a pure +x state. Such particles would be split into +z and −z into beams in S, but the two beams would be recombined to give a +x state again at P1—the exit of S. The same thing happens again in T. If we follow by a third apparatus U, whose axis is in the +x direction and, as shown in (a), all the particles would go into the + beam of U. Now imagine what happens if and are swung around together by 90° to the positions shown in (b). Again, the apparatus puts out just what it takes in, so the particles that enter are in a +state with respect to S, which is different. By symmetry, we would now expect only one-half of the particles to get through.”

I should note that (b) shows the apparatus wide open so… Well… I must assume that’s a mistake (and should alert the current editors of the Lectures to it): Feynman’s narrative tells us we should also imagine it with the minus channel shut. In that case, it should, effectively, filter approximately half of the particles out, while they all get through in (a). So that’s a measurement result which shows the direction, as we see it, makes a difference.

Now, Feynman would be very angry with me—because, as mentioned, he hates philosophers—but I’d say: this experiment proves that a direction is something real. Of course, the next philosophical question then is: what is a direction? I could answer this by pointing to the experiment above: a direction is something that alters the probabilities between the STU tube as set up in (a) versus the STU tube in (b). In fact—but, I admit, that would be pretty ridiculous—we could use the varying probabilities as we wrench this tube over varying angles to define an angle! But… Well… While that’s a perfectly logical argument, I agree it doesn’t sound very sensical.

OK. Next step. What follows may cause brain damage. 🙂 Please abandon all pre-conceived notions and definitions for a while and think through the following logic.

You know this stuff is about transformations of amplitudes (or wavefunctions), right? [And you also want to hear about those special 720° symmetry, right? No worries. We’ll get there.] So the questions all revolve around this: what happens to amplitudes (or the wavefunction) when we go from one reference frame—or representation, as it’s referred to in quantum mechanics—to another?

Well… I should immediately correct myself here: a reference frame and a representation are two different things. They are related but… Well… Different… Quite different. Not same-same but different. 🙂 I’ll explain why later. Let’s go for it.

Before talking representations, let us first think about what we really mean by changing the reference frame. To change it, we first need to answer the question: what is our reference frame? It is a mathematical notion, of course, but then it is also more than that: it is our reference frame. We use it to make measurements. That’s obvious, you’ll say, but let me make a more formal statement here:

The reference frame is given by (1) the geometry (or the shape, if that sounds easier to you) of the measurement apparatus (so that’s the experimental set-up) here) and (2) our perspective of it.

If we would want to sound academic, we might refer to Kant and other philosophers here, who told us—230 years ago—that the mathematical idea of a three-dimensional reference frame is grounded in our intuitive notions of up and down, and left and right. [If you doubt this, think about the necessity of the various right-hand rules and conventions that we cannot do without in math, and in physics.] But so we do not want to sound academic. Let us be practical. Just think about the following. The apparatus gives us two directions:

(1) The up direction, which we associate with the positive direction of the z-axis, and

(2) the direction of travel of our particle, which we associate with the positive direction of the y-axis.

Now, if we have two axes, then the third axis (the x-axis) will be given by the right-hand rule, right? So we may say the apparatus gives us the reference frame. Full stop. So… Well… Everything is relative? Is this reference frame relative? Are directions relative? That’s what you’ve been told, but think about this: relative to what? Here is where the object meets the subject. What’s relative? What’s absolute? Frankly, I’ve started to think that, in this particular situation, we should, perhaps, not use these two terms. I am not saying that our observation of what physically happens here gives these two directions any absolute character but… Well… You will have to admit they are more than just some mathematical construct: when everything is said and done, we will have to admit that these two directions are real. because… Well… They’re part of the reality that we are observing, right? And the third one… Well… That’s given by our perspective—by our right-hand rule, which is… Well… Our right-hand rule.

Of course, now you’ll say: if you think that ‘relative’ and ‘absolute’ are ambiguous terms and that we, therefore, may want to avoid them a bit more, then ‘real’ and its opposite (unreal?) are ambiguous terms too, right? Well… Maybe. What language would you suggest? 🙂 Just stick to the story for a while. I am not done yet. So… Yes… What is their reality? Let’s think about that in the next section.

Perspectives, reference frames and symmetries

You’ve done some mental exercises already as you’ve been working your way through the previous section, but you’ll need to do plenty more. In fact, they may become physical exercise too: when I first thought about these things (symmetries and, more importantly, asymmetries in space), I found myself walking around the table with some asymmetrical everyday objects and papers with arrows and clocks and other stuff on it—effectively analyzing what right-hand screw, thumb or grip rules actually mean. 🙂

So… Well… I want you to distinguish—just for a while—between the notion of a reference frame (think of the xyz reference frame that comes with the apparatus) and your perspective on it. What’s our perspective on it? Well… You may be looking from the top, or from the side and, if from the side, from the left-hand side or the right-hand side—which, if you think about it, you can only define in terms of the various positive and negative directions of the various axes. 🙂 If you think this is getting ridiculous… Well… Don’t. Feynman himself doesn’t think this is ridiculous, because he starts his own “long and abstract side tour” on transformations with a very simple explanation of how the top and side view of the apparatus are related to the axes (i.e. the reference frame) that comes with it. You don’t believe me? This is the very first illustration of his Lecture on this:

Modified Stern-GerlachHe uses it to explain the apparatus (which we don’t do here because you’re supposed to already know how these (modified or improved) Stern-Gerlach apparatuses work). So let’s continue this story. Suppose that we are looking in the positive y-direction—so that’s the direction in which our particle is moving—then we might imagine how it would look like when we would make a 180° turn and look at the situation from the other side, so to speak. We do not change the reference frame (i.e. the orientation) of the apparatus here: we just change our perspective on it. Instead of seeing particles going away from us, into the apparatus, we now see particles coming towards us, out of the apparatus.

What happens—but that’s not scientific language, of course—is that left becomes right, and right becomes left. Top still is top, and bottom is bottom. We are looking now in the negative y-direction, and the positive direction of the x-axis—which pointed right when we were looking in the positive y-direction—now points left. I see you nodding your head now—because you’ve heard about parity inversions, mirror symmetries and what have you—and I hear you say: “That’s the mirror world, right?”

No. It is not. I wrote about this in another post: the world in the mirror is the world in the mirror. We don’t get a mirror image of an object by going around it and looking at its back side. I can’t dwell too much on this (just check that post, and another one who talks about the same), but so don’t try to connect it to the discussions on symmetry-breaking and what have you. Just stick to this story, which is about transformations of amplitudes (or wavefunctions). [If you really want to know—but I know this sounds counterintuitive—the mirror world doesn’t really switch left for right. Your reflection doesn’t do a 180 degree turn: it is just reversed front to back, with no rotation at all. It’s only your brain which mentally adds (or subtracts) the 180 degree turn that you assume must have happened from the observed front to back reversal. So the left to right reversal is only apparent. It’s a common misconception, and… Well… I’ll let you figure this out yourself. I need to move on.] Just note the following:

  1. The xyz reference frame remains a valid right-handed reference frame. Of course it does: it comes with our beam splitter, and we can’t change its reality, right? We’re just looking at it from another angle. Our perspective on it has changed.
  2. However, if we think of the real and imaginary part of the wavefunction describing the electrons that are going through our apparatus as perpendicular oscillations (as shown below)—a cosine and sine function respectively—then our change in perspective might, effectively, mess up our convention for measuring angles.

I am not saying it does. Not now, at least. I am just saying it might. It depends on the plane of the oscillation, as I’ll explain in a few moments. Think of this: we measure angles counterclockwise, right? As shown below… But… Well… If the thing below would be some funny clock going backwards—you’ve surely seen them in a bar or so, right?—then… Well… If they’d be transparent, and you’d go around them, you’d see them as going… Yes… Clockwise. 🙂 [This should remind you of a discussion on real versus pseudo-vectors, or polar versus axial vectors, but… Well… We don’t want to complicate the story here.]

Circle_cos_sin

Now, if we would assume this clock represents something real—and, of course, I am thinking of the elementary wavefunction eiθ = cosθ + i·sinθ now—then… Well… Then it will look different when we go around it. When going around our backwards clock above and looking at it from… Well… The back, we’d describe it, naively, as… Well… Think! What’s your answer? Give me the formula! 🙂

[…]

We’d see it as eiθ = cos(−θ) + i·sin(−θ) = cosθ − i·sinθ, right? The hand of our clock now goes clockwise, so that’s the opposite direction of our convention for measuring angles. Hence, instead of eiθ, we write eiθ, right? So that’s the complex conjugate. So we’ve got a different image of the same thing here. Not good. Not good at all. :-/

You’ll say: so what? We can fix this thing easily, right? You don’t need the convention for measuring angles or for the imaginary unit (i) here. This particle is moving, right? So if you’d want to look at the elementary wavefunction as some sort of circularly polarized beam (which, I admit, is very much what I would like to do, but its polarization is rather particular as I’ll explain in a minute), then you just need to define left- and right-handed angles as per the standard right-hand screw rule (illustrated below). To hell with the counterclockwise convention for measuring angles!

right-hand rule

You are right. We could use the right-hand rule more consistently. We could, in fact, use it as an alternative convention for measuring angles: we could, effectively, measure them clockwise or counterclockwise depending on the direction of our particle. But… Well… The fact is: we don’t. We do not use that alternative convention when we talk about the wavefunction. Physicists do use the counterclockwise convention all of the time and just jot down these complex exponential functions and don’t realize that, if they are to represent something real, our perspective on the reference frame matters. To put it differently, the direction in which we are looking at things matters! Hence, the direction is not… Well… I am tempted to say… Not relative at all but then… Well… We wanted to avoid that term, right? 🙂

[…]

I guess that, by now, your brain may suffered from various short-circuits. If not, stick with me a while longer. Let us analyze how our wavefunction model might be impacted by this symmetry—or asymmetry, I should say.

The flywheel model of an electron

In our previous posts, we offered a model that interprets the real and the imaginary part of the wavefunction as oscillations which each carry half of the total energy of the particle. These oscillations are perpendicular to each other, and the interplay between both is how energy propagates through spacetime. Let us recap the fundamental premises:

  1. The dimension of the matter-wave field vector is force per unit mass (N/kg), as opposed to the force per unit charge (N/C) dimension of the electric field vector. This dimension is an acceleration (m/s2), which is the dimension of the gravitational field.
  2. We assume this gravitational disturbance causes our electron (or a charged mass in general) to move about some center, combining linear and circular motion. This interpretation reconciles the wave-particle duality: fields interfere but if, at the same time, they do drive a pointlike particle, then we understand why, as Feynman puts it, “when you do find the electron some place, the entire charge is there.” Of course, we cannot prove anything here, but our elegant yet simple derivation of the Compton radius of an electron is… Well… Just nice. 🙂
  3. Finally, and most importantly in the context of this discussion, we noted that, in light of the direction of the magnetic moment of an electron in an inhomogeneous magnetic field, the plane which circumscribes the circulatory motion of the electron should also comprise the direction of its linear motion. Hence, unlike an electromagnetic wave, the plane of the two-dimensional oscillation (so that’s the polarization plane, really) cannot be perpendicular to the direction of motion of our electron.

Let’s say some more about the latter point here. The illustrations below (one from Feynman, and the other is just open-source) show what we’re thinking of. The direction of the angular momentum (and the magnetic moment) of an electron—or, to be precise, its component as measured in the direction of the (inhomogeneous) magnetic field through which our electron is traveling—cannot be parallel to the direction of motion. On the contrary, it must be perpendicular to the direction of motion. In other words, if we imagine our electron as spinning around some center (see the illustration on the left-hand side), then the disk it circumscribes (i.e. the plane of the polarization) has to comprise the direction of motion.

Of course, we need to add another detail here. As my readers will know, we do not really have a precise direction of angular momentum in quantum physics. While there is no fully satisfactory explanation of this, the classical explanation—combined with the quantization hypothesis—goes a long way in explaining this: an object with an angular momentum J and a magnetic moment μ that is not exactly parallel to some magnetic field B, will not line up: it will precess—and, as mentioned, the quantization of angular momentum may well explain the rest. [Well… Maybe… We have detailed our attempts in this regard in various posts on this (just search for spin or angular momentum on this blog, and you’ll get a dozen posts or so), but these attempts are, admittedly, not fully satisfactory. Having said that, they do go a long way in relating angles to spin numbers.]

The thing is: we do assume our electron is spinning around. If we look from the up-direction only, then it will be spinning clockwise if its angular momentum is down (so its magnetic moment is up). Conversely, it will be spinning counterclockwise if its angular momentum is up. Let us take the up-state. So we have a top view of the apparatus, and we see something like this:electron waveI know you are laughing aloud now but think of your amusement as a nice reward for having stuck to the story so far. Thank you. 🙂 And, yes, do check it yourself by doing some drawings on your table or so, and then look at them from various directions as you walk around the table as—I am not ashamed to admit this—I did when thinking about this. So what do we get when we change the perspective? Let us walk around it, counterclockwise, let’s say, so we’re measuring our angle of rotation as some positive angle. Walking around it—in whatever direction, clockwise or counterclockwise—doesn’t change the counterclockwise direction of our… Well… That weird object that might—just might—represent an electron that has its spin up and that is traveling in the positive y-direction.

When we look in the direction of propagation (so that’s from left to right as you’re looking at this page), and we abstract away from its linear motion, then we could, vaguely, describe this by some wrenched eiθ = cosθ + i·sinθ function, right? The x- and y-axes of the apparatus may be used to measure the cosine and sine components respectively.

Let us keep looking from the top but walk around it, rotating ourselves over a 180° angle so we’re looking in the negative y-direction now. As I explained in one of those posts on symmetries, our mind will want to switch to a new reference frame: we’ll keep the z-axis (up is up, and down is down), but we’ll want the positive direction of the x-axis to… Well… Point right. And we’ll want the y-axis to point away, rather than towards us. In short, we have a transformation of the reference frame here: z’zy’ = − y, and x’ = − x. Mind you, this is still a regular right-handed reference frame. [That’s the difference with a mirror image: a mirrored right-hand reference frame is no longer right-handed.] So, in our new reference frame, that we choose to coincide with our perspective, we will now describe the same thing as some −cosθ − i·sinθ = −eiθ function. Of course, −cosθ = cos(θ + π) and −sinθ = sin(θ + π) so we can write this as:

cosθ − i·sinθ = cos(θ + π) + i·sinθ = ei·(θ+π) = eiπ·eiθ = −eiθ.

Sweet ! But… Well… First note this is not the complex conjugate: eiθ = cosθ − i·sinθ ≠ −cosθ − i·sinθ = −eiθ. Why is that? Aren’t we looking at the same clock, but from the back? No. The plane of polarization is different. Our clock is more like those in Dali’s painting: it’s flat. 🙂 And, yes, let me lighten up the discussion with that painting here. 🙂 We need to have some fun while torturing our brain, right?

The_Persistence_of_Memory

So, because we assume the plane of polarization is different, we get an −eiθ function instead of a eiθ function.

Let us now think about the ei·(θ+π) function. It’s the same as −eiθ but… Well… We walked around the z-axis taking a full 180° turn, right? So that’s π in radians. So that’s the phase shift here. Hey! Try the following now. Go back and walk around the apparatus once more, but let the reference frame rotate with us, as shown below. So we start left and look in the direction of propagation, and then we start moving about the z-axis (which points out of this page, toward you, as you are looking at this), let’s say by some small angle α. So we rotate the reference frame about the z-axis by α and… Well… Of course, our ei·θ now becomes an our ei·(θ+α) function, right? We’ve just derived the transformation coefficient for a rotation about the z-axis, didn’t we? It’s equal to ei·α, right? We get the transformed wavefunction in the new reference frame by multiplying the old one by ei·α, right? It’s equal to ei·α·ei·θ = ei·(θ+α), right?

electron wave perspective changeWell…

[…]

No. The answer is: no. The transformation coefficient is not ei·α but ei·α/2. So we get an additional 1/2 factor in the phase shift.

Huh? Yes. That’s what it is: when we change the representation, by rotating our apparatus over some angle α about the z-axis, then we will, effectively, get a new wavefunction, which will differ from the old one by a phase shift that is equal to only half of the rotation angle only.

Huh? Yes. It’s even weirder than that. For a spin down electron, the transformation coefficient is ei·α/2, so we get an additional minus sign in the argument.

Huh? Yes.

I know you are terribly disappointed, but that’s how it is. That’s what hampers an easy geometric interpretation of the wavefunction. Paraphrasing Feynman, I’d say that, somehow, our electron not only knows whether or not it has taken a turn, but it also knows whether or not it is moving away from us or, conversely, towards us.

[…]

But… Hey! Wait a minute! That’s it, right? 

What? Well… That’s it! The electron doesn’t know whether it’s moving away or towards us. That’s nonsense. But… Well… It’s like this:

Our ei·α coefficient describes a rotation of the reference frame. In contrast, the ei·α/2 and ei·α/2 coefficients describe what happens when we rotate the T apparatus! Now that is a very different proposition. 

Right! You got it! Representations and reference frames are different things. Quite different, I’d say: representations are real, reference frames aren’t—but then you don’t like philosophical language, do you? 🙂 But think of it. When we just go about the z-axis, a full 180°, but we don’t touch that T-apparatus, we don’t change reality. When we were looking at the electron while standing left to the apparatus, we watched the electrons going in and moving away from us, and when we go about the z-axis, a full 180°, looking at it from the right-hand side, we see the electrons coming out, moving towards us. But it’s still the same reality. We simply change the reference frame—from xyz to x’y’z’ to be precise: we do not change the representation.

In contrast, when we rotate the apparatus over a full 180°, our electron now goes in the opposite direction. And whether that’s away or towards us, that doesn’t matter: it was going in one direction while traveling through S, and now it goes in the opposite direction—relative to the direction it was going in S, that is.

So what happens, really, when we change the representation, rather than the reference frame? Well… Let’s think about that. 🙂

Quantum-mechanical weirdness?

The transformation matrix for the amplitude of a system to be in an up or down state (and, hence, presumably, for a wavefunction) for a rotation about the z-axis is the following one:

rotation matrix

Feynman derives this matrix in a rather remarkable intellectual tour de force in the 6th of his Lectures on Quantum Mechanics. So that’s pretty early on. He’s actually worried about that himself, apparently, and warns his students that “This chapter is a rather long and abstract side tour, and it does not introduce any idea which we will not also come to by a different route in later chapters. You can, therefore, skip over it, and come back later if you are interested.”

Well… That’s how approached it. I skipped it, and didn’t worry about those transformations for quite a while. But… Well… You can’t avoid them. In some weird way, they are at the heart of the weirdness of quantum mechanics itself. Let us re-visit his argument. Feynman immediately gets that the whole transformation issue here is just a matter of finding an easy formula for that phase shift. Why? He doesn’t tell us. Lesser mortals like us must just assume that’s how the instinct of a genius works, right? 🙂 So… Well… Because he knows—from experiment—that the coefficient is ei·α/2 instead of ei·α, he just says the phase shift—which he denotes by λ—must be some proportional to the angle of rotation—which he denotes by φ rather than α (so as to avoid confusion with the Euler angle α). So he writes:

λ = m·φ

Initially, he also tries the obvious thing: m should be one, right? So λ = φ, right? Well… No. It can’t be. Feynman shows why that can’t be the case by adding a third apparatus once again, as shown below.

third apparatusLet me quote him here, as I can’t explain it any better:

“Suppose T is rotated by 360°; then, clearly, it is right back at zero degrees, and we should have C’+ = C+ and C’C or, what is the same thing, ei·m·2π = 1. We get m = 1. [But no!] This argument is wrong! To see that it is, consider that is rotated by 180°. If m were equal to 1, we would have C’+ei·πC+ = −C+ and C’ei·πC = −C. [Feynman works with states here, instead of the wavefunction of the particle as a whole. I’ll come back to this.] However, this is just the original state all over again. Both amplitudes are just multiplied by 1 which gives back the original physical system. (It is again a case of a common phase change.) This means that if the angle between and is increased to 180°, the system would be indistinguishable from the zero-degree situation, and the particles would again go through the (+) state of the apparatus. At 180°, though, the (+) state of the apparatus is the (xstate of the original S apparatus. So a (+x) state would become a (x) state. But we have done nothing to change the original state; the answer is wrong. We cannot have m = 1. We must have the situation that a rotation by 360°, and no smaller angle reproduces the same physical state. This will happen if m = 1/2.”

The result, of course, is this weird 720° symmetry. While we get the same physics after a 360° rotation of the T apparatus, we do not get the same amplitudes. We get the opposite (complex) number: C’+ei·2π/2C+ = −C+ and C’ei·2π/2C = −C. That’s OK, because… Well… It’s a common phase shift, so it’s just like changing the origin of time. Nothing more. Nothing less. Same physics. Same reality. But… Well… C’+ ≠ −C+ and C’ ≠ −C, right? We only get our original amplitudes back if we rotate the T apparatus two times, so that’s by a full 720 degrees—as opposed to the 360° we’d expect.

Now, space is isotropic, right? So this 720° business doesn’t make sense, right?

Well… It does and it doesn’t. We shouldn’t dramatize the situation. What’s the actual difference between a complex number and its opposite? It’s like x or −x, or t and −t. I’ve said this a couple of times already again, and I’ll keep saying it many times more: Nature surely can’t be bothered by how we measure stuff, right? In the positive or the negative direction—that’s just our choice, right? Our convention. So… Well… It’s just like that −eiθ function we got when looking at the same experimental set-up from the other side: our eiθ and −eiθ functions did not describe a different reality. We just changed our perspective. The reference frame. As such, the reference frame isn’t real. The experimental set-up is. And—I know I will anger mainstream physicists with this—the representation is. Yes. Let me say it loud and clear here:

A different representation describes a different reality.

In contrast, a different perspective—or a different reference frame—does not.

Conventions

While you might have had a lot of trouble going through all of the weird stuff above, the point is: it is not all that weird. We can understand quantum mechanics. And in a fairly intuitive way, really. It’s just that… Well… I think some of the conventions in physics hamper such understanding. Well… Let me be precise: one convention in particular, really. It’s that convention for measuring angles. Indeed, Mr. Leonhard Euler, back in the 18th century, might well be “the master of us all” (as Laplace is supposed to have said) but… Well… He couldn’t foresee how his omnipresent formula—eiθ = cosθ + i·sinθ—would, one day, be used to represent something real: an electron, or any elementary particle, really. If he would have known, I am sure he would have noted what I am noting here: Nature can’t be bothered by our conventions. Hence, if eiθ represents something real, then eiθ must also represent something real. [Coz I admire this genius so much, I can’t resist the temptation. Here’s his portrait. He looks kinda funny here, doesn’t he? :-)]

Leonhard_Euler

Frankly, he would probably have understood quantum-mechanical theory as easily and instinctively as Dirac, I think, and I am pretty sure he would have noted—and, if he would have known about circularly polarized waves, probably agreed to—that alternative convention for measuring angles: we could, effectively, measure angles clockwise or counterclockwise depending on the direction of our particle—as opposed to Euler’s ‘one-size-fits-all’ counterclockwise convention. But so we did not adopt that alternative convention because… Well… We want to keep honoring Euler, I guess. 🙂

So… Well… If we’re going to keep honoring Euler by sticking to that ‘one-size-fits-all’ counterclockwise convention, then I do believe that eiθ and eiθ represent two different realities: spin up versus spin down.

Yes. In our geometric interpretation of the wavefunction, these are, effectively, two different spin directions. And… Well… These are real directions: we see something different when they go through a Stern-Gerlach apparatus. So it’s not just some convention to count things like 0, 1, 2, etcetera versus 0, −1, −2 etcetera. It’s the same story again: different but related mathematical notions are (often) related to different but related physical possibilities. So… Well… I think that’s what we’ve got here. Think of it. Mainstream quantum math treats all wavefunctions as right-handed but… Well… A particle with up spin is a different particle than one with down spin, right? And, again, Nature surely cannot be bothered about our convention of measuring phase angles clockwise or counterclockwise, right? So… Well… Kinda obvious, right? 🙂

Let me spell out my conclusions here:

1. The angular momentum can be positive or, alternatively, negative: J = +ħ/2 or −ħ/2. [Let me note that this is not obvious. Or less obvious than it seems, at first. In classical theory, you would expect an electron, or an atomic magnet, to line up with the field. Well… The Stern-Gerlach experiment shows they don’t: they keep their original orientation. Well… If the field is weak enough.]

2. Therefore, we would probably like to think that an actual particle—think of an electron, or whatever other particle you’d think of—comes in two variants: right-handed and left-handed. They will, therefore, either consist of (elementary) right-handed waves or, else, (elementary) left-handed waves. An elementary right-handed wave would be written as: ψ(θi= eiθi = ai·(cosθi + i·sinθi). In contrast, an elementary left-handed wave would be written as: ψ(θie−iθi = ai·(cosθii·sinθi). So that’s the complex conjugate.

So… Well… Yes, I think complex conjugates are not just some mathematical notion: I believe they represent something real. It’s the usual thing: Nature has shown us that (most) mathematical possibilities correspond to real physical situations so… Well… Here you go. It is really just like the left- or right-handed circular polarization of an electromagnetic wave: we can have both for the matter-wave too! [As for the differences—different polarization plane and dimensions and what have you—I’ve already summed those up, so I won’t repeat myself here.] The point is: if we have two different physical situations, we’ll want to have two different functions to describe it. Think of it like this: why would we have two—yes, I admit, two related—amplitudes to describe the up or down state of the same system, but only one wavefunction for it? You tell me.

[…]

Authors like me are looked down upon by the so-called professional class of physicists. The few who bothered to react to my attempts to make sense of Einstein’s basic intuition in regard to the nature of the wavefunction all said pretty much the same thing: “Whatever your geometric (or physical) interpretation of the wavefunction might be, it won’t be compatible with the isotropy of space. You cannot imagine an object with a 720° symmetry. That’s geometrically impossible.”

Well… Almost three years ago, I wrote the following on this blog: “As strange as it sounds, a spin-1/2 particle needs two full rotations (2×360°=720°) until it is again in the same state. Now, in regard to that particularity, you’ll often read something like: “There is nothing in our macroscopic world which has a symmetry like that.” Or, worse, “Common sense tells us that something like that cannot exist, that it simply is impossible.” [I won’t quote the site from which I took this quotes, because it is, in fact, the site of a very respectable  research center!] Bollocks! The Wikipedia article on spin has this wonderful animation: look at how the spirals flip between clockwise and counterclockwise orientations, and note that it’s only after spinning a full 720 degrees that this ‘point’ returns to its original configuration after spinning a full 720 degrees.

720 degree symmetry

So… Well… I am still pursuing my original dream which is… Well… Let me re-phrase what I wrote back in January 2015:

Yes, we can actually imagine spin-1/2 particles, and we actually do not need all that much imagination!

In fact, I am tempted to think that I’ve found a pretty good representation or… Well… A pretty good image, I should say, because… Well… A representation is something real, remember? 🙂

Post scriptum (10 December 2017): Our flywheel model of an electron makes sense, but also leaves many unanswered questions. The most obvious one question, perhaps, is: why the up and down state only?

I am not so worried about that question, even if I can’t answer it right away because… Well… Our apparatus—the way we measure reality—is set up to measure the angular momentum (or the magnetic moment, to be precise) in one direction only. If our electron is captured by some harmonic (or non-harmonic?) oscillation in multiple dimensions, then it should not be all that difficult to show its magnetic moment is going to align, somehow, in the same or, alternatively, the opposite direction of the magnetic field it is forced to travel through.

Of course, the analysis for the spin up situation (magnetic moment down) is quite peculiar: if our electron is a mini-magnet, why would it not line up with the magnetic field? We understand the precession of a spinning top in a gravitational field, but… Hey… It’s actually not that different. Try to imagine some spinning top on the ceiling. 🙂 I am sure we can work out the math. 🙂 The electron must be some gyroscope, really: it won’t change direction. In other words, its magnetic moment won’t line up. It will precess, and it can do so in two directions, depending on its state. 🙂 […] At least, that’s why my instinct tells me. I admit I need to work out the math to convince you. 🙂

The second question is more important. If we just rotate the reference frame over 360°, we see the same thing: some rotating object which we, vaguely, describe by some e+i·θ function—to be precise, I should say: by some Fourier sum of such functions—or, if the rotation is in the other direction, by some ei·θ function (again, you should read: a Fourier sum of such functions). Now, the weird thing, as I tried to explain above is the following: if we rotate the object itself, over the same 360°, we get a different object: our ei·θ and ei·θ function (again: think of a Fourier sum, so that’s a wave packet, really) becomes a −e±i·θ thing. We get a minus sign in front of it. So what happened here? What’s the difference, really?

Well… I don’t know. It’s very deep. If I do nothing, and you keep watching me while turning around me, for a full 360°, then you’ll end up where you were when you started and, importantly, you’ll see the same thing. Exactly the same thing: if I was an e+i·θ wave packet, I am still an an e+i·θ wave packet now. Or if I was an ei·θ wave packet, then I am still an an ei·θ wave packet now. Easy. Logical. Obvious, right?

But so now we try something different: turn around, over a full 360° turn, and you stay where you are. When I am back where I was—looking at you again, so to speak—then… Well… I am not quite the same any more. Or… Well… Perhaps I am but you see me differently. If I was e+i·θ wave packet, then I’ve become a −e+i·θ wave packet now. Not hugely different but… Well… That minus sign matters, right? Or If I was wave packet built up from elementary a·ei·θ waves, then I’ve become a −ei·θ wave packet now. What happened?

It makes me think of the twin paradox in special relativity. We know it’s a paradox—so that’s an apparent contradiction only: we know which twin stayed on Earth and which one traveled because of the gravitational forces on the traveling twin. The one who stays on Earth does not experience any acceleration or deceleration. Is it the same here? I mean… The one who’s turning around must experience some force.

Can we relate this to the twin paradox? Maybe. Note that a minus sign in front of the e−±i·θ functions amounts a minus sign in front of both the sine and cosine components. So… Well… The negative of a sine and cosine is the sine and cosine but with a phase shift of 180°: −cosθ = cos(θ ± π) and −sinθ = sin(θ ± π). Now, adding or subtracting a common phase factor to/from the argument of the wavefunction amounts to changing the origin of time. So… Well… I do think the twin paradox and this rather weird business of 360° and 720° symmetries are, effectively, related. 🙂