Pair creation and annihilation

I had been wanting to update my paper on matter-antimatter pair creation and annihilation for a long time, and I finally did it: here is the new version of it. It was one of my early papers on ResearchGate and, somewhat surprising, it got quite a few downloads (all is relative: I am happy with a few thousand). I actually did not know why, but now I understand: it does take down the last defenses of QCD- and QFT-theorists. As such, I now think this paper is at least as groundbreaking as my paper on de Broglie’s matter-wave (which gets the most reads), or my paper on the proton radius (which gets the most recommendations).

My paper on de Broglie’s matter-wave is important because it explains why and how de Broglie’s bright insight (matter having some frequency and wavelength) was correct, but got the wrong interpretation: the frequencies and wavelengths are orbital frequencies, and the wavelengths are are not to be interpreted as linear distances (not like wavelengths of light) but the quantum-mechanical equivalent of the circumferences of orbital radii. The paper also shows why spin (in this or the opposite direction) should be incorporated into any analysis straight from the start: you cannot just ignore spin and plug it in back later. The paper on the proton radius shows how that works to yield short and concise explanations of the measurable properties of elementary particles (the electron and the proton). The two combined provide the framework: an analysis of matter in terms of pointlike particles does not get us anywhere. We must think of matter as charge in motion, and we must analyze the two- or three-dimensional structure of these oscillations, and use it to also explain interactions between matter-particles (elementary or composite) and light-particles (photons and neutrinos, basically). I have explained these mass-without-mass models too many times now, so I will not dwell on it.

So, how that paper on matter-antimatter pair creation and annihilation fit in? The revision resulted in a rather long and verbose thing, so I will refer you to it and just summarize it very briefly. Let me start by copying the abstract: “The phenomenon of matter-antimatter pair creation and annihilation is usually taken as confirmation that, somehow, fields can condense into matter-particles or, conversely, that matter-particles can somehow turn into lightlike particles (photons and/or neutrinos, which are nothing but traveling fields: electromagnetic or, in the case of the neutrino, some strong field, perhaps). However, pair creation usually involves the presence of a nucleus or other charged particles (such as electrons in experiment #E144). We, therefore, wonder whether pair creation and annihilation cannot be analyzed as part of some nuclear process. To be precise, we argue that the usual nuclear reactions involving protons and neutrons can effectively account for the processes of pair creation and annihilation. We therefore argue that the need to invoke some quantum field theory (QFT) to explain these high-energy processes would need to be justified much better than it currently is.”

Needless to say, the last line above is a euphemism: we think our explanation is complete, and that QFT is plain useless. We wrote the following rather scathing appreciation of it in a footnote of the paper: “We think of Aitchison & Hey’s presentation of [matter-antimatter pair creation and annihilation] in their Gauge Theories in Particle Physics (2012) – or presentations (plural), we should say. It is considered to be an advanced but standard textbook on phenomena like this. However, one quickly finds oneself going through the index and scraping together various mathematical treatments – wondering what they explain, and also wondering how all of the unanswered questions or hypotheses (such as, for example, the particularities of flavor mixing, helicity, the Majorana hypothesis, etcetera) contribute to understanding the nature of the matter at hand. I consider it a typical example of how – paraphrasing Sabine Hossenfelder’s judgment on the state of advanced physics research – physicist do indeed tend to get lost in math.”

That says it all. Our thesis is that charge cannot just appear or disappear: it is not being created out of nothing (or out of fields, we should say). The observations (think of pion production and decay from cosmic rays here) and the results of the experiments (the mentioned #E144 experiment or other high-energy experiments) cannot be disputed, but the mainstream interpretation of what actually happens or might be happening in those chain reactions suffers from what, in daily life, we would refer to as ‘very sloppy accounting’. Let me quote or paraphrase a few more lines from my paper to highlight the problem, and to also introduce my interpretation of things which, as usual, are based on a more structural analysis of what matter actually is:

“Pair creation is most often observed in the presence of a nucleus. The role of the nucleus is usually reduced to that of a heavy mass only: it only appears in the explanation to absorb or provide some kinetic energy in the overall reaction. We instinctively feel the role of the nucleus must be far more important than what is usually suggested. To be specific, we suggest pair creation should (also) be analyzed as being part of a larger nuclear process involving neutron-proton interactions. […]”

“Charge does not get ‘lost’ or is ‘created’, but [can] switch its ‘spacetime’ or ‘force’ signature [when interacting with high-energy (anti)photons or (anti)neutrinos].”

“[The #E144 experiment or other high-energy experiments involving electrons] accounts for the result of the experiment in terms of mainstream QED analysis, and effectively thinks of the pair production being the result of the theoretical ‘Breit-Wheeler’ pair production process from photons only. However, this description of the experiment fails to properly account for the incoming beam of electrons. That, then, is the main weakness of the ‘explanation’: it is a bit like making abstraction of the presence of the nucleus in the pair creation processes that take place near them (which, as mentioned above, account for the bulk of those).”

We will say nothing more about it here because we want to keep our blog post(s) short: read the paper! 🙂 To wrap this up for you, the reader(s) of this post, we will only quote or paraphrase some more ontological or philosophical remarks in it:

“The three-layered structure of the electron (the classical, Compton and Bohr radii of the electron) suggest that charge may have some fractal structure and – moreover – that such fractal structure may be infinite. Why do we think so? If the fractal structure would not be infinite, we would have to acknowledge – logically – that some kind of hard core charge is at the center of the oscillations that make up these particles, and it would be very hard to explain how this can actually disappear.” [Note: This is a rather novel new subtlety in our realist interpretation of quantum physics, so you may want to think about it. Indeed, we were initially not very favorable to the idea of a fractal charge structure because such fractal structure is, perhaps, not entirely consistent with the idea of a Zitterbewegung charge with zero rest mass), we think much more favorably of the hypothesis now.]

“The concept of charge is and remains mysterious. However, in philosophical or ontological terms, I do not think of it as a mystery: at some point, we must, perhaps, accept that the essence of the world is charge, and that:

  • There is also an antiworld, and that;
  • It consists of an anticharge that we can fully define in terms of the signature of the force(s) that keep it together, and that;
  • The two worlds can, quite simply, not co-exist or – at least – not interact with each other without annihilating each other.

Such simple view of things must, of course, feed into cosmological theories: how, then, came these two worlds into being? We offered some suggestions on that in a rather simple paper on cosmology (our one and only paper on the topic), but it is not a terrain that we have explored (yet).”

So, I will end this post in pretty much the same way as the old Looney Tunes or Merrie Melodies cartoons used to end, and that’s by saying: “That’s all Folks.” 🙂

Enjoy life and do not worry too much. It is all under control and, if it is not, then that is OK too. 🙂

Advertisement

The Nature of Antimatter (dark matter)

The electromagnetic force has an asymmetry: the magnetic field lags the electric field. The phase shift is 90 degrees. We can use complex notation to write the E and B vectors as functions of each other. Indeed, the Lorentz force on a charge is equal to: F = qE + q(v×B). Hence, if we know the (electric field) E, then we know the (magnetic field) B: B is perpendicular to E, and its magnitude is 1/c times the magnitude of E. We may, therefore, write:

B = –iE/c

The minus sign in the B = –iE/c expression is there because we need to combine several conventions here. Of course, there is the classical (physical) right-hand rule for E and B, but we also need to combine the right-hand rule for the coordinate system with the convention that multiplication with the imaginary unit amounts to a counterclockwise rotation by 90 degrees. Hence, the minus sign is necessary for the consistency of the description. It ensures that we can associate the aeiEt/ħ and aeiEt/ħ functions with left and right-handed spin (angular momentum), respectively.

Now, we can easily imagine a antiforce: an electromagnetic antiforce would have a magnetic field which precedes the electric field by 90 degrees, and we can do the same for the nuclear force (EM and nuclear oscillations are 2D and 3D oscillations respectively). It is just an application of Occam’s Razor principle: the mathematical possibilities in the description (notations and equations) must correspond to physical realities, and vice versa (one-on-one). Hence, to describe antimatter, all we have to do is to put a minus sign in front of the wavefunction. [Of course, we should also take the opposite of the charge(s) of its antimatter counterpart, and please note we have a possible plural here (charges) because we think of neutral particles (e.g. neutrons, or neutral mesons) as consisting of opposite charges.] This is just the principle which we already applied when working out the equation for the neutral antikaon (see Annex IV and V of the above-referenced paper):

Don’t worry if you do not understand too much of the equations: we just put them there to impress the professionals. 🙂 The point is this: matter and antimatter are each other opposite, literally: the wavefunctions aeiEt/ħ and –aeiEt/ħ add up to zero, and they correspond to opposite forces too! Of course, we also have lightparticles, so we have antiphotons and antineutrinos too.

We think this explains the rather enormous amount of so-called dark matter and dark energy in the Universe (the Wikipedia article on dark matter says it accounts for about 85% of the total mass/energy of the Universe, while the article on the observable Universe puts it at about 95%!). We did not say much about this in our YouTube talk about the Universe, but we think we understand things now. Dark matter is called dark because it does not appear to interact with the electromagnetic field: it does not seem to absorb, reflect or emit electromagnetic radiation, and is, therefore, difficult to detect. That should not be a surprise: antiphotons would not be absorbed or emitted by ordinary matter. Only anti-atoms (i.e. think of a antihydrogen atom as a antiproton and a positron here) would do so.

So did we explain the mystery? We think so. 🙂

We will conclude with a final remark/question. The opposite spacetime signature of antimatter is, obviously, equivalent to a swap of the real and imaginary axes. This begs the question: can we, perhaps, dispense with the concept of charge altogether? Is geometry enough to understand everything? We are not quite sure how to answer this question but we do not think so: a positron is a positron, and an electron is an electron¾the sign of the charge (positive and negative, respectively) is what distinguishes them! We also think charge is conserved, at the level of the charges themselves (see our paper on matter/antimatter pair production and annihilation).

We, therefore, think of charge as the essence of the Universe. But, yes, everything else is sheer geometry! 🙂

Quantum field theory and pair creation/annihilation

The creation and annihilation of matter-antimatter pairs is usually taken as proof that, somehow, fields can condense into matter-particles or, conversely, that matter-particles can somehow turn into light-particles (photons), which are nothing but traveling electromagnetic fields. However, pair creation always requires the presence of another particle and one may, therefore, legitimately wonder whether the electron and positron were not already present, somehow.

Carl Anderson’s original discovery of the positron involved cosmic rays hitting atmospheric molecules, a process which involves the creation of unstable particles including pions. Cosmic rays themselves are, unlike what the name suggests, no rays – not like gamma rays, at least – but highly energetic protons and atomic nuclei. Hence, they consist of matter-particles, not of photons. The creation of electron-positron pairs from cosmic rays also involves pions as intermediate particles:

1. The π+ and π particles have net positive and negative charge of 1 e+ and 1 e respectively. According to mainstream theory, this is because they combine a u and d quark but – abandoning the quark hypothesis[1] – we may want to think their charge could be explained, perhaps, by the presence of an electron![2]

2. The neutral pion, in turn, might, perhaps, consist of an electron and a positron, which should annihilate but take some time to do so!

Neutral pions have a much shorter lifetime – in the order of 10-18 s only – than π+ and π particles, whose lifetime is a much more respectable 2.6 times 10-8 s. Something you can effectively measure, in order words.[3] In short, despite similar energies, neutral pions do not seem to have a lot in common with π+ and π particles. Even the energy difference is quite substantial when measured in terms of the electron mass: the neutral pion has an energy of about 135 MeV, while π+ and π particles have an energy of almost 140 MeV. To be precise, the difference is about 4.6 MeV. That is quite a lot: the electron rest energy is 0.511 MeV only.[4] So it is not stupid to think that π+ and π particles might carry an extra positron or electron, somehow. In our not-so-humble view, this is as legitimate as thinking – like Rutherford did – that a neutron should, somehow, combine a proton and an electron.[5]

The whole analysis – both in the QED as well as in the QCD sector of quantum physics – would radically alter when thinking of neutral particles – such as neutrons and π0 particles – not as consisting of quarks but of protons/antiprotons and/or electrons/positrons cancelling each other’s charges out. We have not seen much – if anything – which convinces us this cannot be correct. We, therefore, believe a more realist interpretation of quantum physics should be possible for high-energy phenomena as well. With a more realist theory, we mean one that does not involve quantum field and/or renormalization theory.

Such new theory would not be contradictory to the principle that, in Nature, the number of charged particles is no longer conserved, but that total (net) charge is actually being conserved, always. Hence, charged particles could appear and disappear, but they would be part of neutral particles. All particles in such processes are very short-lived anyway, so what is a particle here? We should probably think of these things as an unstable combination of various bits and bobs, isn’t it? 😊

So, yes, we did a paper on this. And we like it. Have a look: it’s on ResearchGate, academia.edu, and – as usual – Phil Gibb’s site (which has all of our papers, including our very early ones, which you might want to take with a pinch of salt). 🙂


[1] You may be so familiar with quarks that you do not want to question this hypothesis anymore. If so, let me ask you: where do the quarks go when a π± particle disintegrates into a muon-e±?

[2] They disintegrate into muons (muon-electrons or muon-positrons), which themselves then decay into an electron or a positron respectively.

[3] The point estimate of the lifetime of a neutral pion of the Particle Data Group (PDG) is about 8.5 times 10-17 s. Such short lifetimes cannot measured in a classical sense: such particles are usually referred to as resonances (rather than particles) and the lifetime is calculated from a so-called resonance width. We may discuss this approach in more detail later.

[4] Of course, it is much smaller when compared to the proton (rest) energy, which it is about 938 MeV.

[5] See our short history of quantum-mechanical ideas or our paper on protons and neutrons.

Matter and antimatter

Matter and anti-matter: what’s the difference? The charge, of course: positive versus negative. Yes. Of course! But what’s beyond? Our ring current model offers a geometric explanation, so we thought we might try our hand at offering a geometric explanation of the difference between matter and anti-matter too. Have a look at the paper. It’s kinda primitive, but I need to start somewhere, right? 🙂