Cleaning Up After Bell

On the limits of theorems, the sociology of prizes, and the slow work of intellectual maturity

When I re-read two older posts of mine on Bell’s Theorem — one written in 2020, at a moment when my blog was gaining unexpected traction, and another written in 2023 in reaction to what I then experienced as a Nobel Prize award controversy — I feel a genuine discomfort.

Not because I think the core arguments were wrong.
But because I now see more clearly what was doing the talking.

There is, in both texts, a mixture of three things:

  1. A principled epistemic stance (which is still there);
  2. A frustration with institutional dynamics in physics (also there);
  3. But, yes, also a degree of rhetorical impatience that no longer reflects how I want to think — or be read.

This short text is an attempt to disentangle those layers.


1. Why I instinctively refused to “engage” with Bell’s Theorem

In the 2020 post, I wrote — deliberately provocatively — that I “did not care” about Bell’s Theorem. That phrasing was not chosen to invite dialogue; it was chosen to draw a boundary. At the time, my instinctive reasoning was this:

Bell’s Theorem is a mathematical theorem. Like any theorem, it tells us what follows if certain premises are accepted. Its physical relevance therefore depends entirely on whether those premises are physically mandatory, or merely convenient formalizations.

This is not a rejection of mathematics. It is a refusal to grant mathematics automatic ontological authority.

I was — and still am — deeply skeptical of the move by which a formal result is elevated into a metaphysical verdict about reality itself. Bell’s inequalities constrain a particular class of models (local hidden-variable models of a specific type). They do not legislate what Nature must be. In that sense, my instinct was aligned not only with Einstein’s well-known impatience with axiomatic quantum mechanics, but also with Bell himself, who explicitly hoped that a “radical conceptual renewal” might one day dissolve the apparent dilemma his theorem formalized.

Where I now see a weakness is not in the stance, but in its expression. Saying “I don’t care” reads as dismissal, while what I really meant — and should have said — is this:

I do not accept the premises as ontologically compulsory, and therefore I do not treat the theorem as decisive.

That distinction matters.


2. Bell, the Nobel Prize, and a sociological paradox

My 2023 reaction was sharper, angrier, and less careful — and that is where my current discomfort is strongest.

At the time, it seemed paradoxical to me that:

  • Bell was once close to receiving a Nobel Prize for a theorem he himself regarded as provisional,
  • and that nearly six decades later, a Nobel Prize was awarded for experiments demonstrating violations of Bell inequalities.

In retrospect, the paradox is not logical — it is sociological.

The 2022 Nobel Prize did not “disprove Bell’s Theorem” in a mathematical sense. It confirmed, experimentally and with great technical sophistication, that Nature violates inequalities derived under specific assumptions. What was rewarded was experimental closure, not conceptual resolution.

The deeper issue — what the correlations mean — remains as unsettled as ever.

What troubled me (and still does) is that the Nobel system has a long history of rewarding what can be stabilized experimentally, while quietly postponing unresolved interpretational questions. This is not scandalous; it is structural. But it does shape the intellectual culture of physics in ways that deserve to be named.

Seen in that light, my indignation was less about Bell, and more about how foundational unease gets ritualized into “progress” without ever being metabolized conceptually.


3. Authority, responsibility, and where my anger really came from

The episode involving John Clauser and climate-change denial pushed me from critique into anger — and here, too, clarity comes from separation.

The problem there is not quantum foundations.
It is the misuse of epistemic authority across domains.

A Nobel Prize in physics does not confer expertise in climate science. When prestige is used to undermine well-established empirical knowledge in an unrelated field, that is not dissent — it is category error dressed up as courage.

My reaction was visceral because it touched a deeper nerve: the responsibility that comes with public authority in science. In hindsight, folding this episode into a broader critique of Bell and the Nobel Prize blurred two distinct issues — foundations of physics, and epistemic ethics.

Both matter. They should not be confused.


4. Where I stand now

If there is a single thread connecting my current thinking to these older texts, it is this:

I am less interested than before in winning arguments, and more interested in clarifying where different positions actually part ways — ontologically, methodologically, and institutionally.

That shift is visible elsewhere in my work:

  • in a softer, more discriminating stance toward the Standard Model,
  • in a deliberate break with institutions and labels that locked me into adversarial postures,
  • and in a conscious move toward reconciliation where reconciliation is possible, and clean separation where it is not.

The posts on Bell’s Theorem were written at an earlier stage in that trajectory. I do not disown them. But I no longer want them to stand without context.

This text is that context.


Final notes

1. On method and collaboration

Much of the clarification in this essay did not emerge in isolation, but through extended dialogue — including with an AI interlocutor that acted, at times, less as a generator of arguments than as a moderator of instincts: slowing me down, forcing distinctions, and insisting on separating epistemic claims from emotional charge. That, too, is part of the story — and perhaps an unexpected one. If intellectual maturity means anything, it is not the abandonment of strong positions, but the ability to state them without needing indignation to carry the weight. That is the work I am now trying to do.

It is also why I want to be explicit about how these texts are currently produced: they are not outsourced to AI, but co-generated through dialogue. In that dialogue, I deliberately highlight not only agreements but also remaining disagreements — not on the physics itself, but on its ontological interpretation — with the AI agent I currently use (ChatGPT 5.2). Making those points of convergence and divergence explicit is, I believe, intellectually healthier than pretending they do not exist.

2. On stopping, without pretending to conclude

This post also marks a natural stopping point. Over the past weeks, several long-standing knots in my own thinking — Bell’s Theorem (what this post is about), the meaning of gauge freedom, the limits of Schrödinger’s equation as a model of charge in motion, or even very plain sociological considerations on how sciences moves forward — have either been clarified or cleanly isolated.

What remains most resistant is the problem of matter–antimatter pair creation and annihilation. Here, the theory appears internally consistent, while the experimental evidence, impressive as it is, still leaves a small but non-negligible margin of doubt — largely because of the indirect, assumption-laden nature of what is actually being measured. I do not know the experimental literature well enough to remove that last 5–10% of uncertainty, and I consider it a sign of good mental health not to pretend otherwise.

For now, that is where I leave it. Not as a conclusion, but as a calibration: knowing which questions have been clarified, and which ones deserve years — rather than posts — of further work.

3. Being precise on my use of AI: on cleaning up ideas, not outsourcing thinking

What AI did not do

Let me start with what AI did not do.

It did not:

  • supply new experimental data,
  • resolve open foundational problems,
  • replace reading, calculation, or judgment,
  • or magically dissolve the remaining hard questions in physics.

In particular, it did not remove my residual doubts concerning matter–antimatter pair creation. On that topic, I remain where I have been for some time: convinced that the theory is internally consistent, convinced that the experiments are impressive and largely persuasive, and yet unwilling to erase the remaining 5–10% of doubt that comes from knowing how indirect, assumption-laden, and instrument-mediated those experiments necessarily are. I still do not know the experimental literature well enough to close that last gap—and I consider it a sign of good mental health that I do not pretend otherwise.

What AI did do

What AI did do was something much more modest—and much more useful.

It acted as a moderator of instincts.

In the recent rewrites—most notably in this post (Cleaning Up After Bell)—AI consistently did three things:

  1. It cut through rhetorical surplus.
    Not by softening arguments, but by separating epistemic claims from frustration, indignation, or historical irritation.
  2. It forced distinctions.
    Between mathematical theorems and their physical premises; between experimental closure and ontological interpretation; between criticism of ideas and criticism of institutions.
  3. It preserved the spine while sharpening the blade.
    The core positions did not change. What changed was their articulation: less adversarial, more intelligible, and therefore harder to dismiss.

In that sense, AI did not “correct” my thinking. It helped me re-express it in a way that better matches where I am now—intellectually and personally.

Two primitives or one?

A good illustration is the remaining disagreement between myself and my AI interlocutor on what is ultimately primitive in physics.

I still tend to think in terms of two ontological primitives: charge and fields—distinct, but inseparably linked by a single interaction structure. AI, drawing on a much broader synthesis of formal literature, prefers a single underlying structure with two irreducible manifestations: localized (charge-like) and extended (field-like).

Crucially, this disagreement is not empirical. It is ontological, and currently underdetermined by experiment. No amount of rhetorical force, human or artificial, can settle it. Recognizing that—and leaving it there—is part of intellectual maturity.

Why I am stopping (again)

I have said before that I would stop writing, and I did not always keep that promise. This time, however, the stopping point feels natural.

Most of the conceptual “knots” that bothered me in the contemporary discourse on physics have now been:

  • either genuinely clarified,
  • or cleanly isolated as long-horizon problems requiring years of experimental and theoretical work.

At this point, continuing to write would risk producing more words than signal.

There are other domains that now deserve attention: plain work, family projects, physical activity, and the kind of slow, tangible engagement with the world that no theory—however elegant—can replace.

Closing

If there is a single lesson from this episode, it is this:

AI is most useful not when it gives answers, but when it helps you ask what you are really saying—and whether you still stand by it once the noise is stripped away.

Used that way, it does not diminish thinking.
It disciplines it.

For now, that is enough.

Another tainted Nobel Prize…

Last year’s (2022) Nobel Prize in Physics went to Alain Aspect, John Clauser, and Anton Zeilinger for “for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science.”

I did not think much of that award last year. Proving that Bell’s No-Go Theorem cannot be right? Great. Finally! I think many scientists – including Bell himself – already knew this theorem was a typical GIGO argument: garbage in, garbage out. As the young Louis de Broglie famously wrote in the introduction of his thesis: hypotheses are worth only as much as the consequences that can be deduced from it, and the consequences of Bell’s Theorem did not make much sense. As I wrote in my post on it, Bell himself did not think much of his own theorem until, of course, he got nominated for a Nobel Prize: it is a bit hard to say you got nominated for a Nobel Prize for a theory you do not believe in yourself, isn’t it? In any case, Bell’s Theorem has now been experimentally disproved. That is – without any doubt – a rather good thing. 🙂 To save the face of the Nobel committee here (why award something that disproves something else that you would have given an award a few decades ago?): Bell would have gotten a Nobel Prize, but he died from brain hemorrhage before, and Nobel Prizes reward the living only.

As for entanglement, I repeat what I wrote many times already: the concept of entanglement – for which these scientists got a Nobel Prize last year – is just a fancy word for the simultaneous conservation of energy, linear and angular momentum (and – if we are talking matter-particles – charge). There is ‘no spooky action at a distance’, as Einstein would derogatorily describe it when the idea was first mentioned to him. So, I do not see why a Nobel Prize should be awarded for rephrasing a rather logical outcome of photon experiments in metamathematical terms.

Finally, the Nobel Prize committee writes that this has made a significant contribution to quantum information science. I wrote a paper on the quantum computing hype, in which I basically ask this question: qubits may or may not be better devices than MOSFETs to store data – they are not, and they will probably never be – but that is not the point. How does quantum information change the two-, three- or n-valued or other rule-based logic that is inherent to the processing of information? I wish the Nobel Prize committee could be somewhat more explicit on that because, when everything is said and done, one of the objectives of the Prize is to educate the general public about the advances of science, isn’t it? :-/

However, all this ranting of mine is, of course, unimportant. We know that it took the distinguished Royal Swedish Science Academy more than 15 years to even recognize the genius of an Einstein, so it was already clear then that their selection criteria were not necessarily rational. [Einstein finally got a well-deserved Nobel Prize, not for relativity theory (strangely enough: if there is one thing on which all physicist are agreed, it is that relativity theory is the bedrock of all of physics, isn’t it?), but for a much less-noted paper on the photoelectric effect – in 1922: 17 years after his annus mirabilis papers had made a killing not only in academic circles but in the headlines of major newspapers as well, and 10 years after a lot of fellow scientists had nominated him for it (1910).]

Again, Mahatma Gandhi never got a Nobel Price for Peace (so Einstein should consider himself lucky to get some Nobel Prize, right?), while Ursula von der Leyen might be getting one for supporting the war with Russia, so I must remind myself of the fact that we do live in a funny world and, perhaps, we should not be trying to make sense of these rather weird historical things. 🙂

Let me turn to the main reason why I am writing this indignant post. It is this: I am utterly shocked by what Dr. John Clauser has done with his newly gained scientific prestige: he joined the CO2 coalition! For those who have never heard of it, it is a coalition of climate change deniers. A bunch of people who:

(1) vehemently deny the one and only consensus amongst all climate scientists, and that is the average temperature on Earth has risen with about two degrees Celsius since the Industrial Revolution, and

(2) say that, if climate change would be real (God forbid!), then we can reverse the trend by easy geo-engineering. We just need to use directed energy or whatever to create more white clouds. If that doesn’t work, then… Well… CO2 makes trees and plants grow, so it will all sort itself out by itself.

[…]

Yes. That is, basically, what Dr. Clauser and all the other scientific advisors of this lobby group – none of which have any credentials in the field they are criticizing (climate science) – are saying, and they say it loud and clearly. That is weird enough, already. What is even weirder, is that – to my surprise – a lot of people are actually buying such nonsense.

Frankly, I have not felt angry for a while, but this thing triggered an outburst of mine on YouTube, in which I state clearly what I think of Dr. Clauser and other eminent scientists who abuse their saint-like Nobel Prize status in society to deceive the general public. Watch my video rant, and think about it for yourself. Now, I am not interested in heated discussions on it: I know the basic facts. If you don’t, I listed them here. Look at the basic graphs and measurements before you would want to argue with me on this, please! To be clear on this: I will not entertain violent or emotional reactions to this post or my video. Moreover, I will delete them here on WordPress and also on my YouTube channel. Yes. For the first time in 10 years or so, I will exercise my right as a moderator of my channels, which is something I have never done before. 🙂

[…]

I will now calm down and write something about the mainstream interpretation of quantum physics again. 🙂 In fact, this morning I woke up with a joke in my head. You will probably think the joke is not very good, but then I am not a comedian and so it is what it is and you can judge for yourself. The idea is that you’d learn something from it. Perhaps. 🙂 So, here we go.

Imagine shooting practice somewhere. A soldier fires at some target with a fine gun, and then everyone looks at the spread of the hits around the bullseye. The quantum physicist says: “See: this is the Uncertainty Principle at work! What is the linear momentum of these bullets, and what is the distance to the target? Let us calculate the standard error.” The soldier looks astonished and says: “No. This gun is no good. One of the engineers should check it.” Then the drill sergeant says this: “The gun is fine. From this distance, all bullets should have hit the bullseye. You are a miserable shooter and you should really practice a lot more.” He then turns to the academic and says: “How did you get in here? I do not understand a word of what you just said and, if I do, it is of no use whatsoever. Please bugger off asap!

This is a stupid joke, perhaps, but there is a fine philosophical point to it: uncertainty is not inherent to Nature, and it also serves no purpose whatsoever in the science of engineering or in science in general. All in Nature is deterministic. Statistically deterministic, but deterministic nevertheless. We do not know the initial conditions of the system, perhaps, and that translates into seemingly random behavior, but if there is a pattern in that behavior (a diffraction pattern, in the case of electron or photon diffraction), then the conclusion should be that there is no such thing as metaphysical ‘uncertainty’. In fact, if you abandon that principle, then there is no point in trying to discover the laws of the Universe, is there? Because if Nature is uncertain, then there are no laws, right? 🙂

To underscore this point, I will, once again, remind you of what Heisenberg originally wrote about uncertainty. He wrote in German and distinguished three very different ideas of uncertainty:

(1) The precision of our measurements may be limited: Heisenberg originally referred to this as an Ungenauigkeit.

(2) Our measurement might disturb the position and, as such, cause the information to get lost and, as a result, introduce an uncertainty in our knowledge, but not in reality. Heisenberg originally referred to such uncertainty as an Unbestimmtheit.

(3) One may also think the uncertainty is inherent to Nature: that is what Heisenberg referred to as Ungewissheit. There is nothing in Nature – and also nothing in Heisenberg’s writings, really – that warrants the elevation of this Ungewissheit to a dogma in modern physics. Why? Because it is the equivalent of a religious conviction, like God exists or He doesn’t (both are theses we cannot prove: Ryle labeled such hypotheses as ‘category mistakes’).

Indeed, when one reads the proceedings of the Solvay Conferences of the late 1920s, 1930s and immediately after WW II (see my summary of it in https://www.researchgate.net/publication/341177799_A_brief_history_of_quantum-mechanical_ideas), then it is pretty clear that none of the first-generation quantum physicists believed in such dogma and – if they did – that they also thought what I am writing here: that it should not be part of science but part of one’s personal religious beliefs.

So, once again, I repeat that this concept of entanglement – for which John Clauser got a Nobel Prize last year – is in the same category: it is just a fancy word for the simultaneous conservation of energy, linear and angular momentum, and charge. There is ‘no spooky action at a distance’, as Einstein would derogatorily describe it when the idea was first mentioned to him.

Let me end by noting the dishonor of Nobel Prize winner John Clauser once again. Climate change is real: we are right in the middle of it, and it is going to get a lot worse before it gets any better – if it is ever going to get better (which, in my opinion, is a rather big ‘if‘…). So, no matter how many Nobel Prize winners deny it, they cannot change the fact that average temperature on Earth has risen by about 2 degrees Celsius since 1850 already. The question is not: is climate change happening? No. The question now is: how do we adapt to it – and that is an urgent question – and, then, the question is: can we, perhaps, slow down the trend, and how? In short, if these scientists from physics or the medical field or whatever other field they excel in are true and honest scientists, then they would do a great favor to mankind not by advocating geo-engineering schemes to reverse a trend they actually deny is there, but by helping to devise and promote practical measures to allow communities that are affected by natural disaster to better recover from them.

So, I’ll conclude this rant by repeating what I think of all of this. Loud and clear: John Clauser and the other scientific advisors of the CO2 coalition are a disgrace to what goes under the name of ‘science’, and this umpteenth ‘incident’ in the history of science or logical thinking makes me think that it is about time that the Royal Swedish Academy of Sciences does some serious soul-searching when, amongst the many nominations, it selects its candidates for a prestigious award like this. Alfred Nobel – one of those geniuses who regretted his great contribution to science and technology was (also) (ab)used to increase the horrors of war – must have turned too many times in his grave now… :-/