Pair creation and annihilation

I had been wanting to update my paper on matter-antimatter pair creation and annihilation for a long time, and I finally did it: here is the new version of it. It was one of my early papers on ResearchGate and, somewhat surprising, it got quite a few downloads (all is relative: I am happy with a few thousand). I actually did not know why, but now I understand: it does take down the last defenses of QCD- and QFT-theorists. As such, I now think this paper is at least as groundbreaking as my paper on de Broglie’s matter-wave (which gets the most reads), or my paper on the proton radius (which gets the most recommendations).

My paper on de Broglie’s matter-wave is important because it explains why and how de Broglie’s bright insight (matter having some frequency and wavelength) was correct, but got the wrong interpretation: the frequencies and wavelengths are orbital frequencies, and the wavelengths are are not to be interpreted as linear distances (not like wavelengths of light) but the quantum-mechanical equivalent of the circumferences of orbital radii. The paper also shows why spin (in this or the opposite direction) should be incorporated into any analysis straight from the start: you cannot just ignore spin and plug it in back later. The paper on the proton radius shows how that works to yield short and concise explanations of the measurable properties of elementary particles (the electron and the proton). The two combined provide the framework: an analysis of matter in terms of pointlike particles does not get us anywhere. We must think of matter as charge in motion, and we must analyze the two- or three-dimensional structure of these oscillations, and use it to also explain interactions between matter-particles (elementary or composite) and light-particles (photons and neutrinos, basically). I have explained these mass-without-mass models too many times now, so I will not dwell on it.

So, how that paper on matter-antimatter pair creation and annihilation fit in? The revision resulted in a rather long and verbose thing, so I will refer you to it and just summarize it very briefly. Let me start by copying the abstract: “The phenomenon of matter-antimatter pair creation and annihilation is usually taken as confirmation that, somehow, fields can condense into matter-particles or, conversely, that matter-particles can somehow turn into lightlike particles (photons and/or neutrinos, which are nothing but traveling fields: electromagnetic or, in the case of the neutrino, some strong field, perhaps). However, pair creation usually involves the presence of a nucleus or other charged particles (such as electrons in experiment #E144). We, therefore, wonder whether pair creation and annihilation cannot be analyzed as part of some nuclear process. To be precise, we argue that the usual nuclear reactions involving protons and neutrons can effectively account for the processes of pair creation and annihilation. We therefore argue that the need to invoke some quantum field theory (QFT) to explain these high-energy processes would need to be justified much better than it currently is.”

Needless to say, the last line above is a euphemism: we think our explanation is complete, and that QFT is plain useless. We wrote the following rather scathing appreciation of it in a footnote of the paper: “We think of Aitchison & Hey’s presentation of [matter-antimatter pair creation and annihilation] in their Gauge Theories in Particle Physics (2012) – or presentations (plural), we should say. It is considered to be an advanced but standard textbook on phenomena like this. However, one quickly finds oneself going through the index and scraping together various mathematical treatments – wondering what they explain, and also wondering how all of the unanswered questions or hypotheses (such as, for example, the particularities of flavor mixing, helicity, the Majorana hypothesis, etcetera) contribute to understanding the nature of the matter at hand. I consider it a typical example of how – paraphrasing Sabine Hossenfelder’s judgment on the state of advanced physics research – physicist do indeed tend to get lost in math.”

That says it all. Our thesis is that charge cannot just appear or disappear: it is not being created out of nothing (or out of fields, we should say). The observations (think of pion production and decay from cosmic rays here) and the results of the experiments (the mentioned #E144 experiment or other high-energy experiments) cannot be disputed, but the mainstream interpretation of what actually happens or might be happening in those chain reactions suffers from what, in daily life, we would refer to as ‘very sloppy accounting’. Let me quote or paraphrase a few more lines from my paper to highlight the problem, and to also introduce my interpretation of things which, as usual, are based on a more structural analysis of what matter actually is:

“Pair creation is most often observed in the presence of a nucleus. The role of the nucleus is usually reduced to that of a heavy mass only: it only appears in the explanation to absorb or provide some kinetic energy in the overall reaction. We instinctively feel the role of the nucleus must be far more important than what is usually suggested. To be specific, we suggest pair creation should (also) be analyzed as being part of a larger nuclear process involving neutron-proton interactions. […]”

“Charge does not get ‘lost’ or is ‘created’, but [can] switch its ‘spacetime’ or ‘force’ signature [when interacting with high-energy (anti)photons or (anti)neutrinos].”

“[The #E144 experiment or other high-energy experiments involving electrons] accounts for the result of the experiment in terms of mainstream QED analysis, and effectively thinks of the pair production being the result of the theoretical ‘Breit-Wheeler’ pair production process from photons only. However, this description of the experiment fails to properly account for the incoming beam of electrons. That, then, is the main weakness of the ‘explanation’: it is a bit like making abstraction of the presence of the nucleus in the pair creation processes that take place near them (which, as mentioned above, account for the bulk of those).”

We will say nothing more about it here because we want to keep our blog post(s) short: read the paper! 🙂 To wrap this up for you, the reader(s) of this post, we will only quote or paraphrase some more ontological or philosophical remarks in it:

“The three-layered structure of the electron (the classical, Compton and Bohr radii of the electron) suggest that charge may have some fractal structure and – moreover – that such fractal structure may be infinite. Why do we think so? If the fractal structure would not be infinite, we would have to acknowledge – logically – that some kind of hard core charge is at the center of the oscillations that make up these particles, and it would be very hard to explain how this can actually disappear.” [Note: This is a rather novel new subtlety in our realist interpretation of quantum physics, so you may want to think about it. Indeed, we were initially not very favorable to the idea of a fractal charge structure because such fractal structure is, perhaps, not entirely consistent with the idea of a Zitterbewegung charge with zero rest mass), we think much more favorably of the hypothesis now.]

“The concept of charge is and remains mysterious. However, in philosophical or ontological terms, I do not think of it as a mystery: at some point, we must, perhaps, accept that the essence of the world is charge, and that:

  • There is also an antiworld, and that;
  • It consists of an anticharge that we can fully define in terms of the signature of the force(s) that keep it together, and that;
  • The two worlds can, quite simply, not co-exist or – at least – not interact with each other without annihilating each other.

Such simple view of things must, of course, feed into cosmological theories: how, then, came these two worlds into being? We offered some suggestions on that in a rather simple paper on cosmology (our one and only paper on the topic), but it is not a terrain that we have explored (yet).”

So, I will end this post in pretty much the same way as the old Looney Tunes or Merrie Melodies cartoons used to end, and that’s by saying: “That’s all Folks.” 🙂

Enjoy life and do not worry too much. It is all under control and, if it is not, then that is OK too. 🙂

Neutrons as composite particles and electrons as gluons?

Neutrons as composite particles

In our rather particular conception of the world, we think of photons, electrons, and protons – and neutrinos – as elementary particles. Elementary particles are, obviously, stable: they would not be elementary, otherwise. The difference between photons and neutrinos on the one hand, and electrons, protons, and other matter-particles on the other, is that we think all matter-particles carry charge—even if they are neutral.

Of course, to be neutral, one must combine positive and negative charge: neutral particles can, therefore, not be elementary—unless we accept the quark hypothesis, which we do not like to do (not now, at least). A neutron must, therefore, be an example of a neutral (composite) matter-particle. We know it is unstable outside of the nucleus but its longevity – as compared to other non-stable particles – is quite remarkable: it survives about 15 minutes—for other unstable particles, we usually talk about micro- or nano-seconds, or worse!

Let us explore what the neutron might be—if only to provide some kind of model for analyzing other unstable particle, perhaps. We should first note that the neutron radius is about the same as that of a proton. How do we know this? NIST only gives the rms charge radius for a proton based on the various proton radius measurements. We, therefore, only have a CODATA value for the Compton wavelength for a neutron, which is more or less the same as that for the proton. To be precise, the two values are this:

λneutron = 1.31959090581(75)10-15 m

λproton = 1.32140985539(40)×10-15 m

These values are just mechanical calculations based on the mass or energy of protons and neutrons respectively: the Compton wavelength is, effectively, calculated as λ = h/mc.[1] However, you should, of course, not only rely on CODATA values only: you should google for experiments measuring the size of a neutron directly or indirectly to get an idea of what is going on here.

Let us look at the energies. The neutron’s energy is about 939,565,420 eV. The proton energy is about 938,272,088 eV. Hence, the difference is about 1,293,332 eV. This mass difference, combined with the fact that neutrons spontaneously decay into protons but – conversely – there is no such thing as spontaneous proton decay[2], confirms we are probably justified in thinking that a neutron must, somehow, combine a proton and an electron. The mass of an electron is 0.511 MeV/c2, so that is only about 40% of the energy difference, but the kinetic and binding energy could make up for the remainder.[3]

So, yes, we will want to think of a neutron as carrying both positive and negative charge inside. These charges balance each other out (there is no net electric charge) but their respective motion still yields a small magnetic moment, which we think of as some net result from the motion of the positive and negative charge inside.

Let us now move to the next grand idea which emerges here.

Electrons as gluons?

The negative charge inside of a neutron may help to keep the nucleus together. We can, therefore, think of this charge as some kind of nuclear glue. We tentatively explored this idea in a paper: Electrons as gluons? The basic idea is this: the electromagnetic force keeps electrons close to the positively charged nucleus and we should, therefore, not exclude that a similar arrangement of positive and negative charges – but one involving some strong(er) force to explain the difference in scale – might exist within the nucleus.

Nonsense? We don’t think so. Consider this: one never finds a proton pair without one or more neutrons. The main isotope of helium (4He), for example, has a nucleus consisting of two protons and two neutrons, while a helium-3 (3He) nucleus consists of two protons and one neutron. When we find a pair of nucleons, like in deuterium (2H), this will always consist of a proton and a neutron. The idea of a negative charge acting as an in-between to keep two positive charges together is, therefore, quite logical. Think of it as the opposite of a positively charged nucleus keeping electrons together in a multi-electron atom.

Does this make sense to you? It does to me, so I’d appreciate any converging or diverging thoughts you might have on this. 🙂

[1] The reader should note that the Compton wavelength and, therefore, the Compton radius is inversely proportional to the mass: a more massive particle is, therefore, associated with a smaller radius. This is somewhat counterintuitive but it is what it is.

[2] None of the experiments (think of the Super-Kamiokande detector here) found any evidence of proton decay so far.

[3] The reader should note that the mass of a proton and an electron add up to less than the mass of a neutron, which is why it is only logical that a neutron should decay into a proton and an electron. Binding energies – think of Feynman’s calculations of the radius of the hydrogen atom, for example – are usually negative.