Cleaning Up After Bell

On the limits of theorems, the sociology of prizes, and the slow work of intellectual maturity

When I re-read two older posts of mine on Bell’s Theorem — one written in 2020, at a moment when my blog was gaining unexpected traction, and another written in 2023 in reaction to what I then experienced as a Nobel Prize award controversy — I feel a genuine discomfort.

Not because I think the core arguments were wrong.
But because I now see more clearly what was doing the talking.

There is, in both texts, a mixture of three things:

  1. A principled epistemic stance (which is still there);
  2. A frustration with institutional dynamics in physics (also there);
  3. But, yes, also a degree of rhetorical impatience that no longer reflects how I want to think — or be read.

This short text is an attempt to disentangle those layers.


1. Why I instinctively refused to “engage” with Bell’s Theorem

In the 2020 post, I wrote — deliberately provocatively — that I “did not care” about Bell’s Theorem. That phrasing was not chosen to invite dialogue; it was chosen to draw a boundary. At the time, my instinctive reasoning was this:

Bell’s Theorem is a mathematical theorem. Like any theorem, it tells us what follows if certain premises are accepted. Its physical relevance therefore depends entirely on whether those premises are physically mandatory, or merely convenient formalizations.

This is not a rejection of mathematics. It is a refusal to grant mathematics automatic ontological authority.

I was — and still am — deeply skeptical of the move by which a formal result is elevated into a metaphysical verdict about reality itself. Bell’s inequalities constrain a particular class of models (local hidden-variable models of a specific type). They do not legislate what Nature must be. In that sense, my instinct was aligned not only with Einstein’s well-known impatience with axiomatic quantum mechanics, but also with Bell himself, who explicitly hoped that a “radical conceptual renewal” might one day dissolve the apparent dilemma his theorem formalized.

Where I now see a weakness is not in the stance, but in its expression. Saying “I don’t care” reads as dismissal, while what I really meant — and should have said — is this:

I do not accept the premises as ontologically compulsory, and therefore I do not treat the theorem as decisive.

That distinction matters.


2. Bell, the Nobel Prize, and a sociological paradox

My 2023 reaction was sharper, angrier, and less careful — and that is where my current discomfort is strongest.

At the time, it seemed paradoxical to me that:

  • Bell was once close to receiving a Nobel Prize for a theorem he himself regarded as provisional,
  • and that nearly six decades later, a Nobel Prize was awarded for experiments demonstrating violations of Bell inequalities.

In retrospect, the paradox is not logical — it is sociological.

The 2022 Nobel Prize did not “disprove Bell’s Theorem” in a mathematical sense. It confirmed, experimentally and with great technical sophistication, that Nature violates inequalities derived under specific assumptions. What was rewarded was experimental closure, not conceptual resolution.

The deeper issue — what the correlations mean — remains as unsettled as ever.

What troubled me (and still does) is that the Nobel system has a long history of rewarding what can be stabilized experimentally, while quietly postponing unresolved interpretational questions. This is not scandalous; it is structural. But it does shape the intellectual culture of physics in ways that deserve to be named.

Seen in that light, my indignation was less about Bell, and more about how foundational unease gets ritualized into “progress” without ever being metabolized conceptually.


3. Authority, responsibility, and where my anger really came from

The episode involving John Clauser and climate-change denial pushed me from critique into anger — and here, too, clarity comes from separation.

The problem there is not quantum foundations.
It is the misuse of epistemic authority across domains.

A Nobel Prize in physics does not confer expertise in climate science. When prestige is used to undermine well-established empirical knowledge in an unrelated field, that is not dissent — it is category error dressed up as courage.

My reaction was visceral because it touched a deeper nerve: the responsibility that comes with public authority in science. In hindsight, folding this episode into a broader critique of Bell and the Nobel Prize blurred two distinct issues — foundations of physics, and epistemic ethics.

Both matter. They should not be confused.


4. Where I stand now

If there is a single thread connecting my current thinking to these older texts, it is this:

I am less interested than before in winning arguments, and more interested in clarifying where different positions actually part ways — ontologically, methodologically, and institutionally.

That shift is visible elsewhere in my work:

  • in a softer, more discriminating stance toward the Standard Model,
  • in a deliberate break with institutions and labels that locked me into adversarial postures,
  • and in a conscious move toward reconciliation where reconciliation is possible, and clean separation where it is not.

The posts on Bell’s Theorem were written at an earlier stage in that trajectory. I do not disown them. But I no longer want them to stand without context.

This text is that context.


Final notes

1. On method and collaboration

Much of the clarification in this essay did not emerge in isolation, but through extended dialogue — including with an AI interlocutor that acted, at times, less as a generator of arguments than as a moderator of instincts: slowing me down, forcing distinctions, and insisting on separating epistemic claims from emotional charge. That, too, is part of the story — and perhaps an unexpected one. If intellectual maturity means anything, it is not the abandonment of strong positions, but the ability to state them without needing indignation to carry the weight. That is the work I am now trying to do.

It is also why I want to be explicit about how these texts are currently produced: they are not outsourced to AI, but co-generated through dialogue. In that dialogue, I deliberately highlight not only agreements but also remaining disagreements — not on the physics itself, but on its ontological interpretation — with the AI agent I currently use (ChatGPT 5.2). Making those points of convergence and divergence explicit is, I believe, intellectually healthier than pretending they do not exist.

2. On stopping, without pretending to conclude

This post also marks a natural stopping point. Over the past weeks, several long-standing knots in my own thinking — Bell’s Theorem (what this post is about), the meaning of gauge freedom, the limits of Schrödinger’s equation as a model of charge in motion, or even very plain sociological considerations on how sciences moves forward — have either been clarified or cleanly isolated.

What remains most resistant is the problem of matter–antimatter pair creation and annihilation. Here, the theory appears internally consistent, while the experimental evidence, impressive as it is, still leaves a small but non-negligible margin of doubt — largely because of the indirect, assumption-laden nature of what is actually being measured. I do not know the experimental literature well enough to remove that last 5–10% of uncertainty, and I consider it a sign of good mental health not to pretend otherwise.

For now, that is where I leave it. Not as a conclusion, but as a calibration: knowing which questions have been clarified, and which ones deserve years — rather than posts — of further work.

3. Being precise on my use of AI: on cleaning up ideas, not outsourcing thinking

What AI did not do

Let me start with what AI did not do.

It did not:

  • supply new experimental data,
  • resolve open foundational problems,
  • replace reading, calculation, or judgment,
  • or magically dissolve the remaining hard questions in physics.

In particular, it did not remove my residual doubts concerning matter–antimatter pair creation. On that topic, I remain where I have been for some time: convinced that the theory is internally consistent, convinced that the experiments are impressive and largely persuasive, and yet unwilling to erase the remaining 5–10% of doubt that comes from knowing how indirect, assumption-laden, and instrument-mediated those experiments necessarily are. I still do not know the experimental literature well enough to close that last gap—and I consider it a sign of good mental health that I do not pretend otherwise.

What AI did do

What AI did do was something much more modest—and much more useful.

It acted as a moderator of instincts.

In the recent rewrites—most notably in this post (Cleaning Up After Bell)—AI consistently did three things:

  1. It cut through rhetorical surplus.
    Not by softening arguments, but by separating epistemic claims from frustration, indignation, or historical irritation.
  2. It forced distinctions.
    Between mathematical theorems and their physical premises; between experimental closure and ontological interpretation; between criticism of ideas and criticism of institutions.
  3. It preserved the spine while sharpening the blade.
    The core positions did not change. What changed was their articulation: less adversarial, more intelligible, and therefore harder to dismiss.

In that sense, AI did not “correct” my thinking. It helped me re-express it in a way that better matches where I am now—intellectually and personally.

Two primitives or one?

A good illustration is the remaining disagreement between myself and my AI interlocutor on what is ultimately primitive in physics.

I still tend to think in terms of two ontological primitives: charge and fields—distinct, but inseparably linked by a single interaction structure. AI, drawing on a much broader synthesis of formal literature, prefers a single underlying structure with two irreducible manifestations: localized (charge-like) and extended (field-like).

Crucially, this disagreement is not empirical. It is ontological, and currently underdetermined by experiment. No amount of rhetorical force, human or artificial, can settle it. Recognizing that—and leaving it there—is part of intellectual maturity.

Why I am stopping (again)

I have said before that I would stop writing, and I did not always keep that promise. This time, however, the stopping point feels natural.

Most of the conceptual “knots” that bothered me in the contemporary discourse on physics have now been:

  • either genuinely clarified,
  • or cleanly isolated as long-horizon problems requiring years of experimental and theoretical work.

At this point, continuing to write would risk producing more words than signal.

There are other domains that now deserve attention: plain work, family projects, physical activity, and the kind of slow, tangible engagement with the world that no theory—however elegant—can replace.

Closing

If there is a single lesson from this episode, it is this:

AI is most useful not when it gives answers, but when it helps you ask what you are really saying—and whether you still stand by it once the noise is stripped away.

Used that way, it does not diminish thinking.
It disciplines it.

For now, that is enough.

Making sense of it all

In recent posts, we have been very harsh in criticizing mainstream academics for not even trying to make sense of quantum mechanics—labeling them as mystery wallahs or, worse, as Oliver Consa does, frauds. While we think the latter criticism is fully justified –we can and should think of some of the people we used to admire as frauds now – I think we should also acknowledge most of the professional physicists are actually doing what we all are doing and that is to, somehow, try to make sense of it all. Nothing more, nothing less.

However, they are largely handicapped: we can say or whatever we write, and we do not need to think about editorial lines. In other words: we are free to follow logic and practice real science. Let me insert a few images here to lighten the discussion. One is a cartoon from the web and the other was sent to me by a friendly academic. As for the painting, if you don’t know him already, you should find out for yourself. 🙂

Both mainstream as well as non-mainstream insiders and outsiders are having very heated discussions nowadays. When joining such discussions, I think we should start by acknowledging that Nature is actually difficult to understand: if it would be easy, we would not be struggling with it. Hence, anyone who wants you to believe it actually all is easy and self-evident is a mystery wallah or a fraud too—at the other end of the spectrum!

For example, I really do believe that the ring current model of elementary particles elegantly combines wave-particle duality and, therefore, avoids countless dichotomies (such as the boson-fermion dichotomy, for example) that have hampered mankind’s understanding of what an elementary particle might actually be. At the same time, I also acknowledge that the model raises its own set of very fundamental questions (see our paper on the nature of antimatter and some other unresolved issues) and can, therefore, be challenged as well. In short, I don’t want to come across as being religious about our own interpretation of things because it is what it is: an interpretation of things we happen to believe in. Why? Because it happens to come across as being more rational, simpler or – to use Dirac’s characterization of a true theory – just beautiful.

So why are we having so much trouble accepting the Copenhagen interpretation of quantum mechanics? Why are we so shocked by Consa’s story on man’s ambition in this particular field of human activity—as opposed to, say, politics or business? It’s because people like you and me thought these men were like us—much cleverer, perhaps, but, otherwise, totally like us: people searching for truth—or some basic version of it, at least! That’s why Consa’s conclusion hurts us so much:

“QED should be the quantized version of Maxwell’s laws, but it is not that at all. […] QED is a bunch of fudge factors, numerology, ignored infinities, hocus-pocus, manipulated calculations, illegitimate mathematics, incomprehensible theories, hidden data, biased experiments, miscalculations, suspicious coincidences, lies, arbitrary substitutions of infinite values and budgets of 600 million dollars to continue the game.”

Amateur physicists like you and me thought we were just missing something: some glaring (in)consistency in their or our theories which we just couldn’t see but that, inevitably, we would suddenly stumble upon while wracking our brains trying to grind through it all. We naively thought all of the sleepless nights, all the agony and all the sacrifices in terms of time and trouble would pay off, one day, at least! But, no, we’ve been wasting countless years to try to understand something which one can’t understand anyway—something which is, quite simply, not true. It was nothing but a bright shining lie and our anger is, therefore, fully justified. It sure did not do much to improve our mental and physical well-being, did it?

Such indignation may be justified but it doesn’t answer the more fundamental question: why did we even bother? Why are we so passionate about these things? Why do we feel that the Copenhagen interpretation cannot be right? One reason, of course, is that we were never alone here. The likes of Einstein, Dirac, and even Bell told us all along. Now that I think of it, all mainstream physicists that I know are critical of us – amateur physicists – but, at the same time, are also openly stating that the Standard Model isn’t satisfactory—and I am really thinking of mainstream researchers here: the likes of Zwiebach, Hossenfelder, Smolin, Gasparan, Batelaan, Pohl and so many others: they are all into string theory or, else, trying to disprove this or that quantum-mechanical theorem. [Batelaan’s reseach on the exchange of momentum in the electron double-slit experiment, for example, is very interesting in this regard.]

In fact, now that I think of it: can you give me one big name who is actually passionate about the Standard Model—apart from one or two Nobel Prize winners who got an undeserved price for it? If no one thinks it can be  right, then why can’t we just accept it just isn’t?

I’ve come to the conclusion the ingrained abhorrence – both of professional as well as of amateur physicists – is rooted in this: the Copenhagen interpretation amounts to a surrender of reason. It is, therefore, not science, but religion. Stating that it is a law of Nature that even experts cannot possibly understand Nature “the way they would like to”, as Richard Feynman put it, is both intuitively as well as rationally unacceptable.

Intuitively—and rationally? That’s a contradictio in terminis, isn’t it? We don’t think so. I think this is an outstanding example of a locus in our mind where intuition and rationality do meet each other.