I made a start with annotating all of my papers. I will arrange them in a paper of itself: working paper no. 30 on ResearchGate. I will date it on 6 December when finished, in honor of one my brothers who died on that day (6 December), from a cancer that visited me too. Jean-Claude was his name. He was a great guy. I miss him, and sometimes feel guilty of having survived. Hereunder follows the first draft – a sort of preview for those who like this blog and have encouraged me to go on.
Post scriptum: The final paper is here and so you can click and download, rather than go through the draft underneath.
Introduction
The 29 papers which I published on ResearchGate end a long period of personal research, which started in earnest when I sent my very first paper, as a young student in applied economics and philosophy, to the 1995 ‘Einstein meets Magritte’ Conference in Brussels. I do no longer have that paper, but I remember it vehemently defended the point of view that the ‘uncertainty’ as modeled in the Uncertainty Principle must be some kind of statistical determinism: what else can it be? Paraphrasing the words of H.A. Lorentz, at the occasion of the 1927 Solvay Conference, a few months before his death, there is, effectively, no need to elevate indeterminism to a philosophical principle: scientists must keep determinism has to be kept as ‘an object of faith.’ That is what science is all about. All that is needed is to replace our notion of predictability by the notion of statistical determinism: we can no longer predict what is going to happen, because we can or do not know the initial conditions, or because our measurement disturbs the phenomenon we are analyzing, but that is it. There is nothing more to it. That is what Heisenberg’s now rather infamous Uncertainty Principle is all about it: it is just what he originally thought about it himself.
I found the metaphor of a fast-rotating airplane propeller a very apt one[1], and several people who wrote me also said it made them see what it was all about. One cannot say where the blades are, exactly, and if you would shoot bullets through it, those bullets will either hit a blade and be deflected or will, quite simply, just go straight through. There is no third possibility. We can only describe the moving propeller in terms of some density in space. This is why the probabilities in quantum physics are proportional to mass densities or, what amounts to the same because of Einstein’s mass-energy equivalence relation, energy densities.
The propeller metaphor is useful in other contexts too. It explains quantum-mechanical tunneling, for example: if one thinks of matter-particles as pointlike charges in motion – which is what we do[2] – then the fields that surround them will be dynamic and, therefore, be like a propeller too: at one particular point in space and in time, the field will have a magnitude and a direction that will not allow another particle (think of it as a bullet) to get through – as the field acts as a force on the charge – but ‘holes appear in the wall’, so to speak, and they do so in a regular fashion, and then the incoming particle’s kinetic energy – while lower than the average potential energy of the barrier – will carry it through. There is, therefore, nothing weird or mysterious about tunneling.
Many more examples may be mentioned, but then I would be rewriting my papers, and that is not the purpose of this one, which is to conclude my research by revisiting and commenting on the rather vast mass of paper I produced previously: 29 papers in just one year (April 2020 – April 2021). These papers did not bring me fame, but did generate enough of a readership to produce a decent RG score – as evidenced below (sorry if this looks egotistical: it is not meant that way[3]).
I have effectively been ridiculed by family, friends and – sadly – by quite a few fellow searchers for truth. But I have also been encouraged, and I prefer to remember the encouragements. One of my blog posts writes about the suicide of Paul Ehrenfest and other personal tragedies in the history of physics. It notes a remark from a former diplomat-friend of mine, who remarked this: “It is good you are studying physics only as a pastime. Professional physicists are often troubled people—miserable.”
I found it an interesting observation from a highly intelligent outsider who, as a diplomat, meets many people with very different backgrounds. I do understand this strange need to probe things at the deepest level—to be able to explain what might or might not be the case (I am using Wittgenstein’s definition of reality here). I also note all of the founding fathers of quantum mechanics ended up becoming pretty skeptical about the theory they had created. Even John Stewart Bell – one of the more famous figures in what may be referred to as the third generation of quantum physicists – did not like his own ‘No Go Theorem’ and thought that some “radical conceptual renewal”[4] might disprove his conclusions.
It sounds arrogant, but I think my papers are representative of such renewal. It is, as great thinkers in the past would have said, an idea whose time has come. Einstein’s ‘unfinished revolution’ – as Lee Smolin calls it – was finished quite a while ago, but mainstream researchers just refuse to accept that.[5] And those researchers who think quantum physicists are ‘lost in math’ are right but, unfortunately, usually make no effort by speaking up and showing the rather obvious way out. Sabine Hossenfelder uses as much guru-like talk as a Sean Carroll.[6]
So what is this paper about?
In May this year, after finishing what I thought of as my last paper on quantum physics, I went to hospital for surgery. Last year, one of my brothers died from prostate cancer at a rather young age: 56, my age bracket. He had been diagnosed but opted for a more experimental treatment instead of the usual surgery that is done, because the consequences of the surgery are effectively very unpleasant and take a lot of joy out of life. I spent a week in a hospital bed, and then a month in my bed at home. I stopped writing. I gave up other things too: I stopped doing sports, and picked up smoking instead. It is a bad habit: Einstein was a smoker and – like me – did not drink, but smoking is bad for health. I feel it. I will quit smoking too, one day – but not now.
The point is: after a long break (more than six months), I did start to engage again in a few conversations, and I also looked at my 29 papers on my ResearchGate page again, and I realized some of them should really be re-written or re-packaged so as to ensure a good flow. I also note now that some of the approaches were more productive than others (some did not lead anywhere at all, actually), and so I felt like I should point those out. There are some errors in logic here and there too (small ones, I think, but errors nevertheless), and then quite some typos.[7] Hence, I thought I should, perhaps, produce an annotated version of these papers, with comments and corrections as mark-ups. Re-writing or re-structuring all of them would require too much work, so I do not want to go there.
So that is what this paper is about: I printed all of the papers, and I will quickly jot down some remarks so as to guide the reader through the package, and alert them to things I thought of good stuff at the time (otherwise I would not have written about it), but that I do think of as not-so-great now.
Before I do so, I should probably make a few general remarks. Let me separate those out in yet another introductory section of this paper.
General remarks
1. The first remark is that I do repeat a few things quite a lot – across and within these papers. Too much, perhaps. However, there is one thing I just cannot repeat enough: one should not think of the matter-wave as something linear. It is an orbital oscillation. This is really where the Old Great Men went wrong. The paper that has been downloaded the most is, effectively, the one on what I refer to as de Broglie’s mistake: the intuition of the young Louis de Broglie that an electron has a frequency was a stroke of genius (and, fortunately, Einstein immediately saw this, so he could bring this young scientist under the attention of everyone else), but this frequency is an orbital frequency. That, I repeat a lot – because only a few people seem to get that (with ‘a few’, I mean the few thousand people who download that paper).
Having said that, I did not do a good job at pointing out the issues with Dirac’s wave equation: I sort of dismiss it out of hand referring to Oppenheimer and Dirac’s discussion at the occasion of the first post-WW II Solvay Conference in my brief history paper on quantum-mechanical ideas, during which they both agree it does not work but fail to provide a consistent alternative. However, I never elaborated on why the equation does not work, so let me do this now.
The reason that it does not work is, basically, the same as the reason why de Broglie’s wave-packet idea does not work: Dirac’s equation is based on the relativistic energy-momentum relation. Just look at Dirac’s 1933 Nobel Prize lecture, in which he gives us the basic equation he used to derive his (in)famous wave equation:
W2/c2 – pr2 – m2/c2 = 0
Dirac does not bother to tell us but this is, basically, just the relativistic energy-momentum relationship: m02c4 = E2 – p2c2 (see, for example, Feynman-I-16, formula 16.13). Indeed: just divide this formula by c2 and re-arrange and you get Dirac’s equation. That is why Dirac’s wave equation is essentially useless: it incorporates linear momentum only. As such, it repeats de Broglie’s mistake, and that is to interpret the ‘de Broglie’ wavelength as something linear. It is not: frequencies, wavelengths are orbital frequencies and orbital circumferences. So anything you would want to do with energy equations that are based on that, leads nowhere[8]: one has to incorporate the reality of spin from the start. Spin-zero particles do not exist and any modeling that starts off from modeling spin-zero particles, therefore, fails: you cannot put spin back in through the back door once you are done with the basic model, so to speak. It just does not work. It is what gives us, for example, those nonsensical 720-degree symmetries, which prevent us from understanding what is actually happening.
2. The second remark that I should make is that I did not pay enough attention to the analysis of light-particles: photons and neutrinos and, possibly, their antiforce or antimatter counterparts. Huh? Their anti-force counterparts? Yes. Remember: energy is measured as a force over a distance, and a force acts on a charge. And then Einstein’s energy-mass energy equivalence relation tells us we should think of mass in terms of energy. Hence, if we know the force, we have got everything. Electrons and protons have a very different charge/mass ratio (q/m) and, therefore, involve two very different forces, even if we think of these two very different forces – which we could refer to as ‘weak’ and ‘strong’ respectively, but that would generate too much confusion because these terms have already been used – as acting on the same charge.
I refer to my paper(s) on this: the hypothesis is, basically, that we have two different forces, indeed! One that keeps, say, the electron together, which is nothing but the electromagnetic force, and one that is much stronger and seems to have a somewhat different structure. That is the force that keeps a muon-electron or a proton together. The structure of this much stronger force is the same because it also acts on a charge, and we also have two field vectors: think of the magnetic field vector lagging the electric field by 90 degrees. However, it is also not the same because the form factor differs: orbital oscillations can be either planar or spherical (2D or 3D).
I will not go into the detail here – again, I would be rewriting the papers, which is not what I want to do here – but the point is that antimatter is defined by an antiforce, which sees the magnetic field vector preceding the electric field vector by the same phase difference (90 degrees). It is just an application of Occam’s Razor Principle: the very same principle which made Dirac predict the existence of the positron: if the math shows there is some possibility of something else existing – a positively charged ‘electron’, at the time – then that possibility must be real, and we must find ‘that thing’. The history of science has shown scientists always did.
That is all clear enough (or not), but so the point here is this: the lightlike particles (photons and neutrinos) that carry the electromagnetic and nuclear force respectively (I refer to that strong(er) force as ‘nuclear’ for rather obvious reasons[9]) must have anti-counterparts: antiphotons and antineutrinos. And so I regret that I did not do too much analysis on that. I am pretty sure, for example, that antiphotons must play a role in the creation of electron-positron pairs in experiments such as SLAC’s E144 experiment (pair production out of light-on-light (photonic) interaction).
In short, I regret I did not have enough time and/or inspiration to analyze such things much more in detail than I did in my paper on matter-antimatter pair production/annihilation, especially because that is a paper that gets a lot of downloads too, so I feel I should rework it to present more material and better analysis. It is unfortunate that energy and time is limited in a man’s life. The question is, effectively, very interesting because the ‘world view’ that emerges from my papers is a rather dualistic one: we have the concept of charge on the one hand, and the concept of a field on the other. Matter-antimatter pair creation/annihilation from/into photons suggest that charge may, after all, be reducible to something that is even more fundamental. That is why I bought a rather difficult book on chiral field theory (Lähde and Meißner, Nuclear Lattice Effective Field Theory, 2019), but an analysis of that will probably be a retirement project or something.
3. The remark above directly relates to something else I think I did not do so well, and that is to explain Mach-Zehnder interference by a model in which we think of circularly polarized photons (or elliptically polarized, I should say, to be somewhat more general) as consisting of two linear components, which we may actually split from each other by a beam splitter. That takes the mystery out of Mach-Zehnder interference, but I acknowledge my analysis in a paper like my ‘K-12 level paper’ on quantum behavior (which gives a one-page overview of the logic) may be too short to convince skeptical readers. The Annex to my rather philosophical paper on the difference between a theory, a calculation and an explanation is better, but even there I should have gone much further than I did.[10]
4. I wrote quite a few papers that aim to develop a credible neutron and/or deuteron model. I think of the neutron in very much the same way as Ernest Rutherford, the intellectual giant who first hypothesized the existence of the neutron based on cosmological research, thought about neutrons: a positively charged proton or other nuclear particle attached to some kind of deep electron.[11] It is worth quoting his instinct on this, as expressed at the occasion of the 1921 Solvay Conference, in response to a question during the discussions on Rutherford’s paper on the possibility of nuclear synthesis in stars or nebulae from the French physicist Jean Baptiste Perrin who, independently from the American chemist William Draper Harkins, had proposed the possibility of hydrogen fusion just the year before (1919):
“We can, in fact, think of enormous energies being released from hydrogen nuclei merging to form helium—much larger energies than what can come from the Kelvin-Helmholtz mechanism.[12] I have been thinking that the hydrogen in the nebulae might come from particles which we may refer to as ‘neutrons’: these would consist of a positive nucleus with an electron at an exceedingly small distance (“un noyau positif avec un électron à toute petite distance“[13]). These would mediate the assembly of the nuclei of more massive elements. It is, otherwise, difficult to understand how the positively charged particles could come together against the repulsive force that pushes them apart—unless we would envisage they are driven by enormous velocities.”
We may add that, just to make sure he gets this right, Rutherford is immediately requested to elaborate his point by the Danish physicist Martin Knudsen, who asks him this: “What’s the difference between a hydrogen atom and this neutron?” Rutherford simply answers as follows: “In a neutron, the electron would be very much closer to the nucleus.”
In light of the fact that it was only in 1932 that James Chadwick would experimentally prove the existence of neutrons (and positively charged protons), we should be deeply impressed by the foresightof Rutherford and the other pioneers here: the predictive powerof their theories and ideas is truly amazing by any standard—including today’s. It may have something to do with the fact that the distinction between theoretical and experimental physicists was not so clear then.[14] The point is this: we fully subscribe to Rutherford’s intuition that a neutron should, somehow, be a composite particle consisting of a proton and an electron, but we did not succeed in modeling that convincingly. We explored two ways to go about it:
- One is to think of a free neutron which, we should remind ourselves, is a semi-stable particle only (its lifetime is a bit less than 15 minutes, which is an eternity in comparison to other non-stable particles). The challenge is then to build a credible n0 = p+ + e– model.
- The other option is to try to build a neutron model based on its stability inside of the deuteron nucleus. Such model should probably be based on Schrödinger’s D+ = p+ + e– + p+ Platzwechsel model, which thinks of the electron as a sort of glue holding the two positive charges together.
The first model is based on the assumption that we have two forces, very much like the centripetal and centrifugal force inside of a double-star. The difference – with a double-star model, that is – is that the charges have no rest mass.[15] The nature of those two forces is, therefore, very different than (1) the centripetal gravitational force that keeps the two stars together and (2) the centrifugal force that results from their kinetic energy and/or orbital momentum. We assumed the attractive force between the p+ and e– is the usual electromagnetic force between two opposite charges (so that keeps them together). However, because the two charges clearly do not just go and sit on top of each other, we also assumed a ‘nuclear’ force acts at very close distances, and we tried to model this by introducing a Yukawa-like nuclear potential.
We will discuss this more in detail when commenting on our papers in the next section, but the truth is that we feel we have not been able to develop a fully consistent model: it is not like our electron or proton model, which yields fully consistent calculations of the experimentally measured mass, radius, magnetic moment and other so-called intrinsic properties (e.g. the anomaly in the magnetic moment of the electron) of these two elementary particles. We could not do for the neutron. However, we hope some smart PhD student will try his or her hand at improving on our models and succeed where we did not.
As for the second model (the deuteron nucleus model), we did not work all that because that is, basically, an even more complicated problem than the math of a classical three-body problem which, as you know, has no analytical solution. So we inevitably have to lump two bodies together – the two protons might make for a nice massive pair, for example – but then you lose the idea of the neutron. In other words, it may give you a deuteron model, but nothing much in terms of a neutron model.
5. Those were the main frustrations, I think. We will probably point out others too in the more detailed paper-by-paper comments in the next section, but I would like to make one or two more remarks regarding style and conversation culture in physics now.
The main remark is this: I did some research in economics (various sub-disciplines ranging from micro-economics to the history of thought in economics) and I found the conversational style of fellow researchers in those fields much more congenial and friendly than in physics. It may have something to do with the fact such study was done while I was young (so that was almost 30 years ago and people were, quite simply, friendlier then, perhaps), but I also think there might be a different reason. I was (and still am) interested in quantum physics because I wanted to know: this search for truth in modeling (or whatever you want to call it) is rooted in a deep need or desire to understand reality. Personally, I think the Uncertainty Principle got elevated to some kind of metaphysical principle because some of the scientists wanted to reserve a space for God there. I am not religious at all, and if God exists, I am sure he would not to be hiding there but inside of our mind.
In any case, my point here is this: I think there is an emotional or religious aspect to discussions on fundamentals that is absent in the social sciences which, in most cases, turns these discussions quickly personal or even aggressive. As an example, I would refer to all these ‘relativity doubters’ that pop up in the more popular or general ResearchGate discussion threads on the ‘consistency’ of quantum physics, or the pros and cons of modern cosmological theories. I vented my frustration on that on my blog a few times (here is an example of my issues with SRT/GRT doubters), and so then I just stop arguing or contributing to these threads, but I do find it sad because a lot of people like me probably just do the same: they stop engaging, and that probably makes the ignorance even worse and then there is no progress at all, of course!
However, having said this, I also note unfriendliness is inversely proportional to expertise, knowledge and experience. In other words: never be put off by anyone. I did go through the trouble of contacting the PRad Research Lab and people like Dr. Randolf Pohl (Max Planck Institute), and I got curt but useful answers from them: answers that challenged me, but those challenges have helped me to think through my models and have contributed to solidifying my initial intuitions, which I would sum as follows: there is a logical interpretation of everything. I refer to it as a realist interpretation of quantum physics and, as far as I am concerned, it is pretty much the end of physics as a science. We do know it all now. There is no God throwing dices or tossing coins. Statistical determinism, yes, but it is all rooted in formulas and closed mathematical models representing real stuff in three-dimensional space and one-dimensional time.
Let me now (self-)criticize my own papers one by one. 😊
Note: I briefly tried to hyperlink the titles (of the papers) to the papers themselves, but the blog editor (WordPress) returned an error. I guess this blog post is quite long and has to many links already. In any case, the titles do refer to the papers on my RG site, and the reader can consult them there.
Paper-by-paper remarks
The concepts of charge, elementary ring currents, potential, potential energy, and field oscillations
No comments. We think this paper gives a rather nice overview of what made sense to us. We also like the two annexes because they talk about quantum-mechanical operators and show why and how the argument of the wavefunction incorporates (special) relativity (SRT/GRT naysayers should definitely read this).
There is a remnant of one of the things we tried and did not yield much: a series expansion of kinetic and/or potential energy from Einstein’s energy-mass equivalence relation. That result from a discussion with researchers trying to model other deep electron orbitals (other than the ‘deep’ electron in a neutron or a deuteron nucleus): they were thinking of potentials in terms of first-, second-, third-, etc.-order terms, so as to simplify things. I went along with it for a while because I thought it might yield something. But so it did not. Hence, I would leave that out now, because the reader probably wonders what it is that I am trying to do, and rightly so!
Lectures on Physics Chapter VI : All of Quantum Math
This is one in a series of what I jokingly thought of as a better or more concise version of Feynman’s Lectures on Physics. I wrote six of these. Feynman once selected ten ‘easy pieces’ and ten ‘not-so-easy’ pieces from his own lectures, if I am not mistaken¾but so these should qualify as relatively ‘easy’ pieces (in comparison with other papers, that is).
It downplays the concept of the gyromagnetic ratio in quantum mechanics somewhat by focusing on the very different charge/mass ratio for the electron and a proton (q/m) only. For the rest, there is nothing much to say about it: if you are a student in physics, this is the math you surely need to master!
All of physics
This paper is one of those attempts to be as short as I can be. I guess I wanted it to be some kind of memorandum or something. It still developed into five pages, and it does not add anything to all of the longer papers. Because it is short and has no real purpose besides providing some summary of everything, I know think its value is rather limited. I should probably take it down.
Do we need the nuclear force hypothesis?
This is one of the papers on a neutron or deuteron model. I think the approach is not bad. The use of orbital energy equations to try to model the orbital trajectories of (zero rest-mass) charges instead of the usual massive objects in gravitational models is promising. However, it is difficult to define what the equivalent of the center of mass would be in such models. One might think it should be the center of ‘energy’, but the energy concepts are dynamic (potential and kinetic energy vary all the time). Hence, it is difficult to precisely define the reference point for the velocity vector(s) and all that. We refer to our general remarks for what we think these papers might have yielded, and what not. For the rest, we let the reader go through them and, hopefully, try to do better.
The nuclear force and quaternion math
We like this paper very much because it shows why quaternion math should be used far more often than it is actually done in physics: it captures the geometry of proton and neutron models so nicely. We probably will want to delve into this more as yet another retirement project. We also like this paper because it is short and crispy.
The language of math
Probably not our best paper, and one that should or could be merged with others covering the same topics. However, the philosophical reflections in this paper – on the arrow of time and what is absolute and relative in physics – are nice and can be readily understood. They would probably come first if ever we would want to write a textbook or something. We also recommend the primordial dimensional analysis of basic equations in physics: modern-day papers usually do not bother to check or comment on these.
Nuclear potential and energy conservation
This is one of these papers which shows the shortcomings of our approach to modeling anything ‘nuclear’. The idea of two or three charges holding and pushing each other apart simultaneous – with two opposite forces acting, just like the centripetal and centrifugal force in any gravitational model – is nice, and we think the substitution of mass by some combination of charge and mass in the orbital energy equation is brilliant (sorry if this sounds egotistical again) but, as mentioned above, it is difficult to define what the equivalent of the center of mass would be in such models.
Also, because of the distance functions involved (the ‘nuclear’ force in such a model varies with the square of the distance and is, therefore, non-linear), one does not get any definite solution to the system: we derived a lower limit for a ‘range’ factor for the nuclear force, for example (and its magnitude corresponds more or less to what mainstream physicists – rather randomly – use when using Yukawa-like potentials[17]).
It would be an interesting area for modeling if and when I would have more time and energy for these things, so I do hope others pick up on it and, hopefully, do better.
The language of physics
Same remarks as above: I like this paper because it is short. I also allow myself to blast away at quark-gluon theories (‘smoking gun physics’, as I call it[18]). There are also the explanations of useful derivatives of the wavefunction, which show why and how our geometric interpretation of the wavefunction makes sense.
We also quickly demonstrate the limitations of the scattering matrix approach to modeling unstable particle and particle system processes, despite the fact we do love it: the problem is just that you lose track of directions and that we, therefore, cannot explain even very simple stuff such as scattering angles in Compton scattering processes using that S-matrix approach. Here too, we hope some clever people might ‘augment’ the approach.
The Zitterbewegung hypothesis and the scattering matrix
We like this paper. It deserves a lot more downloads than it gets, we think. It is the proper alternative to all kinds of new ‘conservation laws’ – and the associated new ‘strange’ properties of particles – that were invented to make sense of the growing ‘particle zoo’. The catalogue of the Particle Data Group should be rewritten, we feel. 😊
The Finite Universe
Of course, any physicist should be interested in cosmology – if only because any Big Bang theory uses pair creation/annihilation theories rather extensively. As mentioned in our general remarks, we still struggle with these theories and, yes, definitely on our list as a retirement project.
The main value of the paper is that it offers a consistent explanation of ‘dark matter’ in terms of antimatter, and also that it does not present the apparently accelerating pace of the expansion of the Universe as something that is necessarily incongruent: there may be other Universes around, beyond what we can observe. The paper also offers some other ‘common-sense’ explanations: none of them involves serious doubts on standard theory (we do not doubt anything like SRT and/or GRT). We, therefore, think that this paper shows that I am much more ‘mainstream’ and far less ‘crackpot’ than my ‘enemies’ pretend I am. 😊
Ontology and physics
This is definitely my worst paper in terms of structure. It has no flow and jumps from this to that. Even when I read it myself, I wonder what it is trying to say. I must have been in a rather weird mood when I wrote it, and then it got too long and I probably then suddenly had enough of it.[19] The conclusions do sound like I had gone mad: if my kids or someone else would have read it before I published it, they might have prevented me from doing so. Any case, it is there now. I will probably take it off one day.
Of course, I note the month of writing: my specialist had just confirmed my prostate cancer was very aggressive, and that I had to do the surgery sooner rather than later if I wanted to avoid what had killed my brother just months before: metastasis to kidneys and other organs. And my long-term girlfriend has just broke up – again. And I had just come back from yet another terrible consultancy job in Afghanistan. Looking into my diary of those days, I had probably relapsed into a bit of drinking, and too many parties with the ghosts of Oppenheimer and Ehrenfest. In short, I should take that paper of the web, but I will leave it there just for the record.
A mass-without-mass model of protons and neutrons
This paper is better than the one mentioned above but – at the same time – suffers from the same defects: no clear flow in the argument, ‘jumpy’, and lots of ‘deus ex machina’-like additions and sidekicks.[20] Its only advantage is that it does offer a rather clear explanation of what works and probably cannot work in Wheeler’s geometrodynamicsprogramme: mass-without-mass models are fine. The way to go: forces act on charges, and energy is force over a distance, and mass relates to energy through Einstein’s mass-energy equivalence relation. No problem. But the concept of charge is difficult to reduce. Chiral field theories may yet prove to do that, but I am rather skeptical. I bought the most recent book(s) on that, but I need to find time and energy to work myself through it.
The nuclear force and the neutron hypothesis
This is a much more focused paper. However, I cannot believe I inserted remarks on the ‘elasticity’ of spacetime there: that stinks of what physicist and Nobel Prize winner Robert B. Laughlin wrote[21]:
“It is ironic that Einstein’s most creative work, the general theory of relativity, should boil down to conceptualizing space as a medium when his original premise [in special relativity] was that no such medium existed [..] The word ‘ether’ has extremely negative connotations in theoretical physics because of its past association with opposition to relativity. This is unfortunate because, stripped of these connotations, it rather nicely captures the way most physicists actually think about the vacuum. . . . Relativity actually says nothing about the existence or nonexistence of matter pervading the universe, only that any such matter must have relativistic symmetry. [..] It turns out that such matter exists. About the time relativity was becoming accepted, studies of radioactivity began showing that the empty vacuum of space had spectroscopic structure similar to that of ordinary quantum solids and fluids. Subsequent studies with large particle accelerators have now led us to understand that space is more like a piece of window glass than ideal Newtonian emptiness. It is filled with ‘stuff’ that is normally transparent but can be made visible by hitting it sufficiently hard to knock out a part. The modern concept of the vacuum of space, confirmed every day by experiment, is a relativistic ether. But we do not call it this because it is taboo.”
I was intrigued by that, because I was still struggling somewhat with the meaning of various ratios in my ‘oscillator’ model of elementary particles, but I now think any reference to an ‘aether-like’ quality of space time is not productive. Space and time are, effectively, categories of our mind – as Immanuel Kant had already pointed out about 240 years ago (it is interesting that the Wikipedia article on Einstein notes that Albert Einstein had digested all of Kant’s philosophy at the age of twelve) – and space and time are relativistically related (there is no ‘absolute’ time that ‘pervades’ all of 3D space) – but there is no reason whatsoever to think of relativistic spacetime as being aether-like. It is just the vacuum in which Maxwell’s electromagnetic waves propagate themselves. There is nothing more to it.
An electromagnetic deuteron model
See the general remarks on my attempts to develop a decent model of the neutron and deuteron nucleus. They were triggered by interesting discussions with a Canadian astrophysicist (Andrew Meulenberg), an American retired SLAC researcher (Jerry Va’vra) and a French ‘cold fusion’ researcher (Jean-Luc Paillet). I was originally not very interested because these are aimed at proving a smaller version of the hydrogen (which is usually referred to as the ‘hydrino’) must exist, and that ‘hydrino’ would offer endless possibilities in terms of ‘new energy’ production. The whole enterprise is driven by one of the many crooks that give the field of ‘cold fusion’ a bad name, but managed to get lots of private funding nevertheless: Randell L. Mills, the promotor of the Brilliant Light Power company in New Jersey. The above-mentioned researchers are serious. I do not think as highly of Randell Mills, although I note he impresses people with his books on ‘classical quantum physics’. I note a lot of ‘hocus-pocus’ in these books.
Lectures on Physics Chapter V : Moving charges, EM waves, radiation and near and far fields
This is one of those ‘Feynman-like’ lectures I wrote. I think of all of them as rather nice. I do not go into speculative things, and I take the trouble of writing everything out, so the reader does not have to do all that much thinking and just can ‘digest’ everything rather easily.
Pair production and annihilation as a nuclear process
This is definitely one of the papers I wanted to further develop if ever I would have more time and energy. See my general remarks: SLAC’s E144 experiment (and similar experiments) are very intriguing because they do seem to indicate the quintessential concept of charge may be further reducible to ‘field-like’ oscillations. I must thank André Michaud here for kindly pointing that out to me.
Lectures on Physics Chapter IV : Electron propagation in a lattice
I think of this paper as highly relevant and practical. It points out why the common view that Schrödinger’s wave equation would not be relativistically correct is erroneous: it is based on an erroneous simplification in the ‘heuristic’ derivation of this wave equation in the context of, yes, crystal lattices. Definitely one of the better papers when I look back at it now¾just like the other ‘lecture-like’ papers. The history of these ‘lecture-like’ papers is simple: I realized I needed to write more ‘K-12 level’ papers (although they are obviously not really K-12 level) so as to be able to communicate better on the ‘basics’ of my realist interpretation of quantum physics and the ‘essentials’ of my elementary particle models.
The paper usefully distinguishes concepts that are often used interchangeably, but must be distinguished clearly: waves, fields, oscillations, amplitudes and signals.
The meaning of uncertainty and the geometry of the wavefunction
This is an oft-downloaded paper, and the number of downloads reflects its value: it does offer a rather clear overview of all of my work on ‘interpreting’ the wavefunction, and shows its geometrical meaning. Hence, I will not comment on it: it speaks for itself.
A survivor’s guide to quantum physics
I like this paper. It wanted to present a sort of ‘short-cut’ for people who want to learn about physics fast and, therefore, will want to avoid all of the mistakes I made when trying to understand it.
Lectures on Physics III : The concept of a field
Same remark as for the other ‘lecture-like’ papers: I think of this as a ‘nice’ paper covering all you would want and need to know about the concept of fields.
Feynman’s Time Machine
This paper talks about where Feynman went wrong in his Lectures. Parvus error in principio magnus est in fine (as Aquinas and, before him, Aristotle said so eloquently), and the ‘small mistake at the beginning’ is surely not a ‘happy’ one! I consider the discovery of this ‘mistake’ to be my greatest personal ‘discovery’ in terms of making sense of it all, and so I do recommend any interested reader to go through the paper.
Lectures on Physics II : Probability amplitudes
This is like the other lectures: a rather straightforward treatment. Of the concept of probability amplitudes, and the related math and physics¾this time.
Lectures on Physics I : Quantum behavior
I appreciate this paper in the same vein: quite straightforward and to the point. It explains the basic ‘mysteries’ which are usually presented in the first course on quantum mechanics at any university in terms that are readily understandable, and shows these are not ‘mysteries’ after all!
Principles of Quantum Physics
For some weird reason, this is a much better ‘summary’ paper than the ones I wrote later (see, for example, my remarks on my Feb 2020 papers).
Matter-waves, amplitudes and signals
This paper further expands on what I consider to be my best paper of all, which is the next one (on de Broglie’s matter-wave). It gets a fair amount of downloads, and so I am happy about that.
De Broglie’s matter-wave: concept and issues
Of all papers, definitely the one I would recommend reading if you have time for only one. See my general remarks on why mainstream QED/QFT does not work. The only thing I should have added are the remarks on Dirac’s equation (this paper has an Annex on wave equations, and so I should have talked about Dirac’s too). But so I did that in the introductory section with general remarks on all of my papers above.
A brief history of quantum-mechanical ideas
I like this paper too. It is not so technical as all of the others, so the ‘lay’ reader may want to go through this. It traces a rather ‘bad’ history of ideas that led nowhere¾but so that is useful to see what should work, and does work, in the field of quantum physics!
The difference between a theory, a calculation, and an explanation
I like this one too. It should probably be read in combination with the above-mentioned paper on the bad ideas in the history of quantum physics.
It is fifty (50!) pages, though. But it has some really interesting things, such as much more consistent presentation of why Mach-Zehnder interference (‘one-photon’ diffraction, or the so-called ‘interference with a photon with itself’) is not so mysterious as it appears to be. It surely should not be explained in terms of nonsensical concepts such as non-locality, entanglement and what have you in modern-day gibberish.
An alternative Theory of Everything: Classical Quantum Physics
This was my very first ‘entry’ on ResearchGate. It is based on the 60-odd papers and the hundreds of blog posts I had published in the decades before, on sites such as viXra.org that are not considered to be mainstream and, therefore, shunned by most. In fact, in the very beginning, I copied my papers on three sites: ResearchGate, viXra.org and academia.org. I stopped doing that when things picked up on RG. I do think of it as the more serious site of the three. 😊
[…]
Well… That is it! If you got here, congratulations for your perseverance!
Jean Louis Van Belle, 6 December 2021
[1] I downloaded the image from a website selling Christmas presents long time ago, and I have not been able to trace back from where I have got it. If someone recognizes this as their picture, please let us know and we will acknowledge the source or remove it.
[2] Particles are small – very small – but not infinitesimally small: they have a non-zero spatial dimension, and structure! Only light-like particles – photons and neutrinos – are truly pointlike, but even they do have a structure as they propagate in relativistic spacetime.
[3] I got the label of ‘crackpot theorist’ or the reproach of ‘not understanding the basics’ a bit all too often, and too often from people who do have better academic credentials in the field, but a publication record which is far less impressive¾or in an unrelated field.
[4] See: John Stewart Bell, Speakable and unspeakable in quantum mechanics, pp. 169–172, Cambridge University Press, 1987 (quoted from Wikipedia). J.S. Bell died from a cerebral hemorrhage in 1990 – the year he was nominated for the Nobel Prize in Physics and which he, therefore, did not receive (Nobel Prizes are not awarded posthumously). He was just 62 years old then.
[5] We think the latest revision of SI units (2019) consecrates that: that revision completes physics. It defines a very precise number of constants in Nature, and simplifies the system such that the system is complete without redundancy. It, therefore, respects Occam’s Razor Principle: the number of degrees of freedom in the description matches that which we find in Nature. Besides prof. dr. Pohl’s contributions to solving the proton radius puzzle, his role in the relevant committees on this revision probably also make him one of the truly great scientists of our era.
[6] We contacted both. Ms. Hossenfelder never reacted to our emails. Mr. Carroll quoted some lines from John Baez’ ‘crackpot index’. I had heard such jokes before so I did not find them so amusing anymore.
[7] Sometimes I find an error even in a formula. That is annoying, but then it is also good: it makes readers double-check and look at the material more carefully. It makes them think for themselves, which is what they should do.
[8] Dirac basically expands this basic energy-momentum relation into a series, but the mathematical conditions for which such expansion is valid are, apparently, not there. The first-, second-, third-, fourth-, etc.-order terms do not converge, and one gets those ‘infinities’ which blow it all up¾which is why Dirac, nearing the end of his life, got so critical and annoyed by the very theory his wave equation led to: quantum field theory. Reading between the lines, a number of Nobel Prize winners in physics do seem to reject some of the theories for which they got the award. W.E. Lamb is one of them: he wrote a highly critical paper of the concept of a photon at rather old age, despite the fact that his contributions to this field of study had yielded him a Nobel Prize! Richard Feynman is another example: he got a Nobel Prize for a number of modern contributions, but his analysis of ‘properties’ such as ‘ strangeness’ in his 1963 Lectures on Physics can be read as being highly critical of the ‘ontologizing’ of concepts such as quarks and gluons, which he seems to think of as being mathematical concepts only. I talk a bit about that in my paper on the alternative to modern-day QED and QFT (a new S-matrix programme), so I will not say more about this here.
[9] Protons are ‘nuclear’ particles.
[10] I think I do a much better job at explaining interference and/or diffraction of electrons in the mentioned papers, although the reader may also be hungry for more detail there.
[11] The reader should note that, although the mass of an electron is only about 1/2000 of that of a proton, the radius of a (free) electron is actually much larger than the radius of a proton. That is a strange thing but it is what it is: a proton is very massive because of that very strong (nuclear) force inside. Hence, when trying to visualize these n = p + e models, one should think of something like an electron cloud with a massive positive charge whirling around in it¾rather than the other way around.
[12] The interested reader can google what this is about.
[13] It is a weird coincidence of history that the proceedings of the Solvay Conferences are publicly available in French, even if many papers must have been written in English. The young Louis de Broglie was one of those young secretaries tasked with translations in what was then a very prominent scientific language: French. It got him hooked, obviously.
[14] When reading modern-day articles in journals, one gets the impression a lot of people theorize an awful lot about very little empirical or experimental data.
[15] The idea is that the pointlike charge itself has no inertial mass. It, therefore, goes round and round at the speed of light. However, while doing so, it acquires an effective mass, which is (usually) half of the total mass of the particle as a whole. This ½ factor confuses many, but should not do so. It comes directly out of the energy equipartition principle, and can also be derived from rather straightforward relativistically correct oscillator energy calculations (see p. 9 of our paper on the meaning of the wavefunction).
[17] We get value that is twice as large as the usual 2.8 fm range. By the way, we think of the latter value as being ‘rather random’ because it is just the deuteron radius. Indeed, if, as a nuclear scientist, you do not have any idea about what range to use for a nuclear scale factor (which is pretty much the case), then that is surely a number that would come in handy, because it is empirical rather than theoretical. We honestly think there is nothing more to it, but I think academics will probably cry wolf and say that their models are much more sophisticated than what I suggest here. I will be frank: can you show me why and how, not approximately but exactly?
[18] If you click on the link, you will see my blog post on it, which also thinks of the Higgs particle – a ‘scalar’ particle, really? – as a figment of the mind. My criticism on these theories which can never really be proven goes back years ago, but has not softened. On the contrary.
[19] This is also a paper with a fair amount of types. On page 36, I talk of the prediction of the proton, for example. Of course, I meant to say: the prediction of the existence of the positron. Such typos are bad. I am ashamed.
[20] Some of these ‘sidekicks’ do get more attention in later papers (e.g. this paper has the early thinking on using orbital energy equations to model orbitals of pointlike charges instead of masses), but they come across as rather chaotic and not well thought-through in this paper, because they were chaotic and not well thought-through at that point in time.
[21] We quote from the Wikipedia article on aether theories here.
One thought on “Post Scriptum”