đź§­ From Strangeness to Symbolism: Why Meaning Still Matters in Science

My interest in quantum theory didn’t come from textbooks. It came from a thirst for understanding — not just of electrons or fields, but of ourselves, our systems, and why we believe what we believe. That same motivation led me to write a recent article on LinkedIn questioning how the Nobel Prize system sometimes rewards storylines over substance. It’s not a rejection of science — it’s a plea to do it better.

This post extends that plea. It argues that motion — not metaphor — is what grounds our models. That structure is more than math. And that if we’re serious about understanding this universe, we should stop dressing up ignorance as elegance. Physics is beautiful enough without the mystery.

Indeed, in a world increasingly shaped by abstraction — in physics, AI, and even ethics — it’s worth asking a simple but profound question: when did we stop trying to understand reality, and start rewarding the stories we are being told about it?

đź§Ş The Case of Physics: From Motion to Metaphor

Modern physics is rich in predictive power but poor in conceptual clarity. Nobel Prizes have gone to ideas like “strangeness” and “charm,” terms that describe particles not by what they are, but by how they fail to fit existing models.

Instead of modeling physical reality, we classify its deviations. We multiply quantum numbers like priests multiplying categories of angels — and in doing so, we obscure what is physically happening.

But it doesn’t have to be this way.

In our recent work on realQM — a realist approach to quantum mechanics — we return to motion. Particles aren’t metaphysical entities. They’re closed structures of oscillating charge and field. Stability isn’t imposed; it emerges. And instability? It’s just geometry breaking down — not magic, not mystery.

No need for ‘charm’. Just coherence.


🧠 Intelligence as Emergence — Not Essence

This view of motion and closure doesn’t just apply to electrons. It applies to neurons, too.

We’ve argued elsewhere that intelligence is not an essence, not a divine spark or unique trait of Homo sapiens. It is a response — an emergent property of complex systems navigating unstable environments.

Evolution didn’t reward cleverness for its own sake. It rewarded adaptability. Intelligence emerged because it helped life survive disequilibrium.

Seen this way, AI is not “becoming like us.” It’s doing what all intelligent systems do: forming patterns, learning from interaction, and trying to persist in a changing world. Whether silicon-based or carbon-based, it’s the same story: structure meets feedback, and meaning begins to form.


🌍 Ethics, Society, and the Geometry of Meaning

Just as physics replaced fields with symbolic formalism, and biology replaced function with genetic determinism, society often replaces meaning with signaling.

We reward declarations over deliberation. Slogans over structures. And, yes, sometimes we even award Nobel Prizes to stories rather than truths.

But what if meaning, like mass or motion, is not an external prescription — but an emergent resonance between system and context?

  • Ethics is not a code. It’s a geometry of consequences.
  • Intelligence is not a trait. It’s a structure that closes upon itself through feedback.
  • Reality is not a theory. It’s a pattern in motion, stabilized by conservation, disrupted by noise.

If we understand this, we stop looking for final answers — and start designing better questions.


✍️ Toward a Science of Meaning

What unifies all this is not ideology, but clarity. Not mysticism, but motion. Not inflation of terms, but conservation of sense.

In physics: we reclaim conservation as geometry.
In intelligence: we see mind as emergent structure.
In ethics: we trace meaning as interaction, not decree.

This is the work ahead: not just smarter machines or deeper theories — but a new simplicity. One that returns to motion, closure, and coherence as the roots of all we seek to know.

Meaning, after all, is not what we say.
It’s what remains when structure holds — and when it fails.

One thought on “đź§­ From Strangeness to Symbolism: Why Meaning Still Matters in Science

Leave a comment