🧭 From Strangeness to Symbolism: Why Meaning Still Matters in Science

My interest in quantum theory didn’t come from textbooks. It came from a thirst for understanding — not just of electrons or fields, but of ourselves, our systems, and why we believe what we believe. That same motivation led me to write a recent article on LinkedIn questioning how the Nobel Prize system sometimes rewards storylines over substance. It’s not a rejection of science — it’s a plea to do it better.

This post extends that plea. It argues that motion — not metaphor — is what grounds our models. That structure is more than math. And that if we’re serious about understanding this universe, we should stop dressing up ignorance as elegance. Physics is beautiful enough without the mystery.

Indeed, in a world increasingly shaped by abstraction — in physics, AI, and even ethics — it’s worth asking a simple but profound question: when did we stop trying to understand reality, and start rewarding the stories we are being told about it?

🧪 The Case of Physics: From Motion to Metaphor

Modern physics is rich in predictive power but poor in conceptual clarity. Nobel Prizes have gone to ideas like “strangeness” and “charm,” terms that describe particles not by what they are, but by how they fail to fit existing models.

Instead of modeling physical reality, we classify its deviations. We multiply quantum numbers like priests multiplying categories of angels — and in doing so, we obscure what is physically happening.

But it doesn’t have to be this way.

In our recent work on realQM — a realist approach to quantum mechanics — we return to motion. Particles aren’t metaphysical entities. They’re closed structures of oscillating charge and field. Stability isn’t imposed; it emerges. And instability? It’s just geometry breaking down — not magic, not mystery.

No need for ‘charm’. Just coherence.


🧠 Intelligence as Emergence — Not Essence

This view of motion and closure doesn’t just apply to electrons. It applies to neurons, too.

We’ve argued elsewhere that intelligence is not an essence, not a divine spark or unique trait of Homo sapiens. It is a response — an emergent property of complex systems navigating unstable environments.

Evolution didn’t reward cleverness for its own sake. It rewarded adaptability. Intelligence emerged because it helped life survive disequilibrium.

Seen this way, AI is not “becoming like us.” It’s doing what all intelligent systems do: forming patterns, learning from interaction, and trying to persist in a changing world. Whether silicon-based or carbon-based, it’s the same story: structure meets feedback, and meaning begins to form.


🌍 Ethics, Society, and the Geometry of Meaning

Just as physics replaced fields with symbolic formalism, and biology replaced function with genetic determinism, society often replaces meaning with signaling.

We reward declarations over deliberation. Slogans over structures. And, yes, sometimes we even award Nobel Prizes to stories rather than truths.

But what if meaning, like mass or motion, is not an external prescription — but an emergent resonance between system and context?

  • Ethics is not a code. It’s a geometry of consequences.
  • Intelligence is not a trait. It’s a structure that closes upon itself through feedback.
  • Reality is not a theory. It’s a pattern in motion, stabilized by conservation, disrupted by noise.

If we understand this, we stop looking for final answers — and start designing better questions.


✍️ Toward a Science of Meaning

What unifies all this is not ideology, but clarity. Not mysticism, but motion. Not inflation of terms, but conservation of sense.

In physics: we reclaim conservation as geometry.
In intelligence: we see mind as emergent structure.
In ethics: we trace meaning as interaction, not decree.

This is the work ahead: not just smarter machines or deeper theories — but a new simplicity. One that returns to motion, closure, and coherence as the roots of all we seek to know.

Meaning, after all, is not what we say.
It’s what remains when structure holds — and when it fails.

Another catastrophe in the making?

It’s funny, but I feel the scientific atmosphere may resemble that of the end of the 19th century: what was supposed to be the triumph of classical physics (with Maxwell publishing his famous equations of electromagnetism) suddenly turned into a catastrophe: the ultraviolet catastrophe, to be precise. And it required an Einstein to publish a radical theory altering the world view (relativity theory). I feel a similar catastrophe – and a better theory of quantum mechanics as well, of course! – may be in the making. Hence, I couldn’t restrain myself and thought it’s time for some fun. So I wrote the following letter to the Nobel Prize Committee.

Let’s see if they react. I don’t think so, but then one never knows, right? 🙂

QUOTE

Dear Sir/Madam – I am just an amateur physicist but, having followed the popular physics scene for many years now, I feel I must alert you to a growing feeling that the Nobel Prize Committee may have been awarded to some rather ‘non-productive forms of atomic theory’ lately.

The mainstream interpretation of quantum physics has been criticized severely, both by professional as well as amateur physicists (for a very professional critique, see – for example – the latest article by Dr. Consa: https://vixra.org/pdf/2002.0011v1.pdf).

Also, awarding a Nobel Prize because experiments reveal ‘signature signals’ of the hypothesized W/Z bosons, quarks and/or Higgs particles do not confirm these ‘intermediate vector bosons’ or these (virtual and non-virtual) quarks and gluons actually exist. There are also other credible ‘mechanisms’ explaining mass and/or the anomalous magnetic moment (the ring current model of electrons and protons, on which I publish myself (see: https://vixra.org/pdf/2002.0160v1.pdf and https://vixra.org/pdf/2003.0094v1.pdf) is just one example of what I think of as credible alternative explanations).

To many of my colleagues – amateur physicists just like me – it feels like the Nobel Prize Committee has really been in a hurry to ‘consecrate’ the Standard Model asap. If this is to confirm the ‘triumph’ of the mainstream interpretation of physics, then I am afraid the effect is just the opposite.

This is just an opinion, of course – but I just wanted to alert you to it – because the unease with the ‘Standard Model’ seems to be spreading quite rapidly lately and has become very palpable, I would think. In this regard, I refer to books such as Hossenfelder’s ‘Lost in Math?’ and other ‘mainstream researchers challenging other mainstream researchers.’

Kindest regards – Jean Louis

Jean Louis Van Belle
Phone: +32 (0)471 079 892
Skype ID: jean.louis.van.belle
Email: jeanlouisvanbelle@outlook.com
LinkedIn: https://www.linkedin.com/in/jean-louis-van-belle-85b74b7a/
Blog: https://readingfeynman.org/
viXra org: https://vixra.org/author/jean_louis_van_belle
Academia.edu: https://independent.academia.edu/JeanLouisVanBelle

None of us is as smart as all of us.” (Kenneth Blanchard)

UNQUOTE