We Could Stop Here.

(But the Next Question Is Already Knocking.)

There is a moment in any long intellectual journey where you could stop.

Not because everything is finished, but because enough has settled to make stopping respectable. The equations close. The concepts line up. Nothing is obviously broken anymore.

This paper — The Photon Wavefunction Revisited — marks one of those moments for me.

👉 The paper is available here on ResearchGate:
https://www.researchgate.net/publication/399111974_The_Photon_Wavefunction_Revisited

It revisits an old and stubborn question — what do we really mean by the photon wavefunction? — using only very old tools: Maxwell’s equations, the Planck–Einstein relation, dimensional analysis, and known scattering results. No new particles. No speculative fields. No hidden dimensions. No “next revolution”.

Just careful rereading.

Why revisit this at all?

Because physics has a habit of answering questions so efficiently that we stop asking what the answers mean. The photon became a “quantum of the electromagnetic field”, calculations worked, experiments agreed — and interpretation quietly retreated.

But interpretation has a way of sneaking back in through the side door.

In this paper, I try to be very explicit about what is being claimed — and what is not:

  • A photon is treated as a light-like, phase-closed object, not as a little billiard ball and not as a probabilistic smear.
  • Its wavefunction is not a mystery object “without meaning”, but a compact encoding of phase structure.
  • Electric and magnetic fields are not competing realities, but orthogonal phase components of a single conserved structure.
  • Energy and momentum conservation follow cleanly from Maxwell’s equations — even when charge is stripped away.

Nothing here overturns quantum electrodynamics. But some things are, perhaps, put back in their original place.

A word about standing waves (and why they appear)

One appendix uses a standing-wave construction to make something visible that is otherwise hidden: how electric and magnetic field energy exchange internally while total energy remains conserved.

This does not mean photons are standing waves. They propagate in one direction. Momentum has a direction. Energy does not.

The standing wave is simply a diagnostic tool — a way of freezing momentum flow so the bookkeeping of energy becomes transparent. If that sounds almost embarrassingly classical… well, that may be the point.

Why this felt worth publishing

This paper took shape slowly, through many iterations, many dead ends, and many “wait — is that actually true?” moments. Some of it was developed with explicit AI assistance, used not as an oracle but as a very patient consistency checker. That role is openly acknowledged.

What mattered most to me was not novelty, but coherence.

When the dust settled, something quietly reassuring happened: the picture that emerged was simpler than what I started with, not more complicated.

And that’s usually a good sign.

Could we stop here?

Yes. Absolutely.

The paper stands on its own. The equations close. Nothing essential is missing.

But physics has never progressed by stopping at “good enough”. The next question is already there:

  • How exactly does this phase picture illuminate electron–photon interaction?
  • What does it really say about the fine-structure constant?
  • Where does this leave matter–antimatter symmetry?

Those are not answered here. They don’t need to be — yet.

For now, this is a place to pause, look around, and make sure we know where we are.

And then, as always, the next question prompts the next question.

That’s not a problem.
That’s the fun part.

— Jean Louis Van Belle

Post Scriptum: The Last Question That Won’t Let Me Sleep (On matter, antimatter, and why one mystery remains)

There is a strange pattern I’ve noticed over the years.

You work your way through a dense thicket of questions. One by one, they loosen. Concepts that once felt contradictory begin to align. The mathematics stops fighting the intuition. The ontology — cautiously, provisionally — starts to hold.

And then, when almost everything is in place, one question refuses to dissolve.

Tonight, for me, that question is matter–antimatter creation and annihilation.

Most things now feel… settled

After revisiting photons, wavefunctions, phase closure, and electromagnetic energy bookkeeping, I feel unusually calm about many things that once bothered me deeply.

  • Photons as light-like, phase-closed objects? That works.
  • Electric and magnetic fields as orthogonal phase components? That works.
  • Energy conservation without charge? Maxwell already knew how to do that.
  • Electron–photon interaction as phase reconfiguration rather than “mystical coupling”? That works too.

None of this feels revolutionary anymore. It feels readable.

And yet.

Matter–antimatter still feels different

In low-energy environments, I’m increasingly comfortable with a very unromantic picture.

Pair creation does not happen “out of nothing.” It happens near nuclei, in strong fields, in structured environments. Something must anchor phase. Something must absorb recoil. Something must allow a stable oscillatory configuration to form.

I’ve sometimes called this a Platzwechsel — a change of place, or role — rather than a miraculous transformation of field into charge. The photon doesn’t “become matter”; a charge configuration re-closes in the presence of structure.

That feels honest. And it fits what experiments actually show.

But then there is the “but” question… This is how I phrase now.

Annihilation is unsettlingly easy

Electron–positron annihilation, on the other hand, requires no such help.

Two charged, massive objects meet, and they disappear into light. Cleanly. Elegantly. No nucleus. No lattice. No scaffold.

That asymmetry matters.

Matter → light is easy.
Light → matter is hard.

Quantum field theory encodes this perfectly well, but encoding is not explaining. And pretending the asymmetry isn’t there has never helped.

What happens to charge?

Here is the thought that keeps me awake — and oddly calm at the same time.

If charge is not a substance, but a phase-closed electromagnetic motion, then annihilation is not mysterious at all. The phase closure simply dissolves. What remains is free phase propagation.

Charge doesn’t “go anywhere”.
It stops being a thing because the structure that constituted it no longer exists.

That idea is unsettling only if one insists that charge must persist locally as a substance. I’ve never found good reasons to believe that.

And pure vacuum pair creation?

High-energy photon–photon pair creation is possible, in principle. But it is rare, fragile, and structurally demanding. It requires extreme energies and densities, and often still some form of external assistance.

That, too, feels telling.

Two freely propagating phase objects have no natural way to decide where a charge configuration should live. Without structure, closure is unstable. Nature seems reluctant — not forbidden, but reluctant.

So where does that leave us?

It leaves me in an oddly peaceful place.

Most of the framework now feels coherent. The remaining mystery is not a loose end to be tied up quickly, but a boundary — a place where explanation must slow down instead of speeding up.

That feels like the right place to stop for tonight.

Not because the mystery is solved, but because it is now cleanly stated.

And that, I’ve learned, is often the real precondition for sleep.

— Jean Louis Van Belle