The End of Physics?

There are two branches of physics. The nicer branch studies equilibrium states: simple laws, stable particles (electrons and protons, basically), the expanding (oscillating?) Universe, etcetera. This branch includes the study of dynamical systems which we can only describe in terms of probabilities or approximations: think of kinetic gas theory (thermodynamics) or, much simpler, hydrostatics (the flow of water, Feynman, Vol. II, chapters 40 and 41), about which Feynman writes this:

“The simplest form of the problem is to take a pipe that is very long and push water through it at high speed. We ask: to push a given amount of water through that pipe, how much pressure is needed? No one can analyze it from first principles and the properties of water. If the water flows very slowly, or if we use a thick goo like honey, then we can do it nicely. You will find that in your textbook. What we really cannot do is deal with actual, wet water running through a pipe. That is the central problem which we ought to solve some day, and we have not.” (Feynman, I-3-7)

Still, we believe first principles do apply to the flow of water through a pipe. In contrast, the second branch of physics – we think of the study of non-stable particles here: transients (charged kaons and pions, for example) or resonances (very short-lived intermediate energy states). The class of physicists who studies these must be commended, but they resemble econometrists modeling input-output relations: if they are lucky, they will get some kind of mathematical description of what goes in and what goes out, but the math does not tell them how stuff actually happens. It leads one to think about the difference between a theory, a calculation and an explanation. Simplifying somewhat, we can represent such input-output relations by thinking of a process that will be operating on some state |ψ⟩ to produce some other state |ϕ⟩, which we write like this:

⟨ϕ|A|ψ⟩

A is referred to as a Hermitian matrix if the process is reversible. Reversibility looks like time reversal, which can be represented by taking the complex conjugate ⟨ϕ|A|ψ⟩* = ⟨ψ|A†|ϕ⟩: we put a minus sign in front of the imaginary unit, so we have –i instead of i in the wavefunctions (or i instead of –i with respect to the usual convention for denoting the direction of rotation). Processes may not reversible, in which case we talk about symmetry-breaking: CPT-symmetry is always respected so, if T-symmetry (time) is broken, CP-symmetry is broken as well. There is nothing magical about that.

Physicists found the description of these input-output relations can be simplified greatly by introducing quarks (see Annex II of our paper on ontology and physics). Quarks have partial charge and, more generally, mix physical dimensions (mass/energy, spin or (angular) momentum). They create some order – think of it as some kind of taxonomy – in the vast zoo of (unstable) particles, which is great. However, we do not think there was a need to give them some kind of ontological status: unlike plants or insects, partial charges do not exist.

We also think the association between forces and (virtual) particles is misguided. Of course, one might say forces are being mediated by particles (matter- or light-particles), because particles effectively pack energy and angular momentum (light-particles – photons and neutrinos – differ from matter-particles (electrons, protons) in that they carry no charge, but they do carry electromagnetic and/or nuclear energy) and force and energy are, therefore, being transferred through particle reactions, elastically or non-elastically. However, we think it is important to clearly separate the notion of fields and particles: they are governed by the same laws (conservation of charge, energy, and (linear and angular) momentum, and – last but not least – (physical) action) but their nature is very different.

W.E. Lamb (1995), nearing the end of his very distinguished scientific career, wrote about “a comedy of errors and historical accidents”, but we think the business is rather serious: we have reached the End of Science. We have solved Feynman’s U = 0 equation. All that is left, is engineering: solving practical problems and inventing new stuff. That should be exciting enough. 🙂

Post scriptum: I added an Annex (III) to my paper on ontology and physics, with what we think of as a complete description of the Universe. It is abstruse but fun (we hope!): we basically add a description of events to Feynman’s U = 0 (un)worldliness formula. 🙂

Quantum field theory and pair creation/annihilation

The creation and annihilation of matter-antimatter pairs is usually taken as proof that, somehow, fields can condense into matter-particles or, conversely, that matter-particles can somehow turn into light-particles (photons), which are nothing but traveling electromagnetic fields. However, pair creation always requires the presence of another particle and one may, therefore, legitimately wonder whether the electron and positron were not already present, somehow.

Carl Anderson’s original discovery of the positron involved cosmic rays hitting atmospheric molecules, a process which involves the creation of unstable particles including pions. Cosmic rays themselves are, unlike what the name suggests, no rays – not like gamma rays, at least – but highly energetic protons and atomic nuclei. Hence, they consist of matter-particles, not of photons. The creation of electron-positron pairs from cosmic rays also involves pions as intermediate particles:

1. The π+ and π particles have net positive and negative charge of 1 e+ and 1 e respectively. According to mainstream theory, this is because they combine a u and d quark but – abandoning the quark hypothesis[1] – we may want to think their charge could be explained, perhaps, by the presence of an electron![2]

2. The neutral pion, in turn, might, perhaps, consist of an electron and a positron, which should annihilate but take some time to do so!

Neutral pions have a much shorter lifetime – in the order of 10-18 s only – than π+ and π particles, whose lifetime is a much more respectable 2.6 times 10-8 s. Something you can effectively measure, in order words.[3] In short, despite similar energies, neutral pions do not seem to have a lot in common with π+ and π particles. Even the energy difference is quite substantial when measured in terms of the electron mass: the neutral pion has an energy of about 135 MeV, while π+ and π particles have an energy of almost 140 MeV. To be precise, the difference is about 4.6 MeV. That is quite a lot: the electron rest energy is 0.511 MeV only.[4] So it is not stupid to think that π+ and π particles might carry an extra positron or electron, somehow. In our not-so-humble view, this is as legitimate as thinking – like Rutherford did – that a neutron should, somehow, combine a proton and an electron.[5]

The whole analysis – both in the QED as well as in the QCD sector of quantum physics – would radically alter when thinking of neutral particles – such as neutrons and π0 particles – not as consisting of quarks but of protons/antiprotons and/or electrons/positrons cancelling each other’s charges out. We have not seen much – if anything – which convinces us this cannot be correct. We, therefore, believe a more realist interpretation of quantum physics should be possible for high-energy phenomena as well. With a more realist theory, we mean one that does not involve quantum field and/or renormalization theory.

Such new theory would not be contradictory to the principle that, in Nature, the number of charged particles is no longer conserved, but that total (net) charge is actually being conserved, always. Hence, charged particles could appear and disappear, but they would be part of neutral particles. All particles in such processes are very short-lived anyway, so what is a particle here? We should probably think of these things as an unstable combination of various bits and bobs, isn’t it? 😊

So, yes, we did a paper on this. And we like it. Have a look: it’s on ResearchGate, academia.edu, and – as usual – Phil Gibb’s site (which has all of our papers, including our very early ones, which you might want to take with a pinch of salt). 🙂


[1] You may be so familiar with quarks that you do not want to question this hypothesis anymore. If so, let me ask you: where do the quarks go when a π± particle disintegrates into a muon-e±?

[2] They disintegrate into muons (muon-electrons or muon-positrons), which themselves then decay into an electron or a positron respectively.

[3] The point estimate of the lifetime of a neutral pion of the Particle Data Group (PDG) is about 8.5 times 10-17 s. Such short lifetimes cannot measured in a classical sense: such particles are usually referred to as resonances (rather than particles) and the lifetime is calculated from a so-called resonance width. We may discuss this approach in more detail later.

[4] Of course, it is much smaller when compared to the proton (rest) energy, which it is about 938 MeV.

[5] See our short history of quantum-mechanical ideas or our paper on protons and neutrons.

Explaining the Lamb shift in classical terms

Corona-virus is bad, but it does have one advantage: more time to work on my hobby ! I finally managed to have a look at what the (in)famous Lamb shift may or may not be. Here is the link to the paper.

I think it’s good. Why? Well… It’s that other so-called ‘high precision test’ of mainstream quantum mechanics (read: quantum field theory)m but so I found it’s just like the rest: ‘Cargo Cult Science.’ [I must acknowledge a fellow amateur physicist and blogger for that reference: it is, apparently, a term coined by Richard Feynman!]

To All: Enjoy and please keep up the good work in these very challenging times !

🙂