Paul Ehrenfest and the search for truth

On 25 September 1933, Paul Ehrenfest took his son Wassily, who was suffering from Down syndrome, for a walk in the park. He shot him, and then killed himself. He was only 53. That’s my age bracket. From the letters he left (here is a summary in Dutch), we know his frustration of not being able to arrive at some kind of common-sense interpretation of the new quantum physics played a major role in the anxiety that had brought him to this point. He had taken courses from Ludwig Boltzmann as an aspiring young man. We, therefore, think Boltzmann’s suicide – for similar reasons – might have troubled him too.

His suicide did not come unexpectedly: he had announced it. In one of his letters to Einstein, he complains about ‘indigestion’ from the ‘unendlicher Heisenberg-Born-Dirac-Schrödinger Wurstmachinen-Physik-Betrieb.’ I’ll let you google-translate that. :-/ He also seems to have gone through the trouble of summarizing all his questions on the new approach in an article in what was then one of the top journals for physics: Einige die Quantenmechanik betreffende Erkundigungsfrage, Zeitschrift für Physik 78 (1932) 555-559 (quoted in the above-mentioned review article). This I’ll translate: Some Questions about Quantum Mechanics.

Ehrenfest

Paul Ehrenfest in happier times (painting by Harm Kamerlingh Onnes in 1920)

A diplomat-friend of mine once remarked this: “It is good you are studying physics only as a pastime. Professional physicists are often troubled people—miserable.” It is an interesting observation from a highly intelligent outsider. To be frank, I understand this strange need to probe things at the deepest level—to be able to explain what might or might not be the case (I am using Wittgenstein’s definition of reality here). Even H.A. Lorentz, who – fortunately, perhaps – died before his successor did what he did, was becoming quite alarmist about the sorry state of academic physics near the end of his life—and he, Albert Einstein, and so many others were not alone. Not then, and not now. All of the founding fathers of quantum mechanics ended up becoming pretty skeptical about the theory they had created. We have documented that elsewhere so we won’t talk too much about it here. Even John Stewart Bell himself – one of the third generation of quantum physicists, we may say – did not like his own ‘No Go Theorem’ and thought that some “radical conceptual renewal”[1] might disprove his conclusions.

The Born-Heisenberg revolution has failed: most – if not all – of contemporary high-brow physicist are pursuing alternative theories—in spite, or because, of the academic straitjackets they have to wear. If a genius like Ehrenfest didn’t buy it, then I won’t buy it either. Furthermore, the masses surely don’t buy it and, yes, truth – in this domain too – is, fortunately, being defined more democratically nowadays. The Nobel Prize Committee will have to do some serious soul-searching—if not five years from now, then ten.

We feel sad for the physicists who died unhappily—and surely for those who took their life out of depression—because the common-sense interpretation they were seeking is so self-evident: de Broglie’s intuition in regard to matter being wavelike was correct. He just misinterpreted its nature: it is not a linear but a circular wave. We quickly insert the quintessential illustration (courtesy of Celani, Vassallo and Di Tommaso) but we refer the reader for more detail to our articles or – more accessible, perhaps – our manuscript for the general public.

aa 2

The equations are easy. The mass of an electron – any matter-particle, really – is the equivalent mass of the oscillation of the charge it carries. This oscillation is, most probably, statistically regular only. So we think it’s chaotic, actually, but we also think the words spoken by Lord Pollonius in Shakespeare’s Hamlet apply to it: “Though this be madness, yet there is method in ‘t.” This means we can meaningfully speak of a cycle time and, therefore, of a frequency. Erwin Schrödinger stumbled upon this motion while exploring solutions to Dirac’s wave equation for free electrons, and Dirac immediately grasped the significance of Schrödinger’s discovery, because he mentions Schrödinger’s discovery rather prominently in his Nobel Prize Lecture:

“It is found that an electron which seems to us to be moving slowly, must actually have a very high frequency oscillatory motion of small amplitude superposed on the regular motion which appears to us. As a result of this oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a prediction which cannot be directly verified by experiment, since the frequency of the oscillatory motion is so high and its amplitude is so small. But one must believe in this consequence of the theory, since other consequences of the theory which are inseparably bound up with this one, such as the law of scattering of light by an electron, are confirmed by experiment.” (Paul A.M. Dirac, Theory of Electrons and Positrons, Nobel Lecture, December 12, 1933)

Unfortunately, Dirac confuses the concept of the electron as a particle with the concept of the (naked) charge inside. Indeed, the idea of an elementary (matter-)particle must combine the idea of a charge and its motion to account for both the particle- as well as the wave-like character of matter-particles. We do not want to dwell on all of this because we’ve written too many papers on this already. We just thought it would be good to sum up the core of our common-sense interpretation of physics. Why? To honor Boltzmann and Ehrenfest: I think of their demise as a sacrifice in search for truth.

[…]

OK. That sounds rather tragic—sorry for that! For the sake of brevity, we will just describe the electron here.

I. Planck’s quantum of action (h) and the speed of light (c) are Nature’s most fundamental constants. Planck’s quantum of action relates the energy of a particle to its cycle time and, therefore, to its frequency:

(1) h = E·T = E/f ⇔ ħ = E/ω

The charge that is whizzing around inside of the electron has zero rest mass, and so it whizzes around at the speed of light: the slightest force on it gives it an infinite acceleration. It, therefore, acquires a relativistic mass which is equal to mγ = me/2 (we refer to our paper(s) for a relativistically correct geometric argument). The momentum of the pointlike charge, in its circular or orbital motion, is, therefore, equal to p = mγ·c = me·c/2.

The (angular) frequency of the oscillation is also given by the formula for the (angular) velocity:

(2) c = a·ω ⇔ ω = c/a

While Eq. (1) is a fundamental law of Nature, Eq. (2) is a simple geometric or mathematical relation only.

II. From (1) and (2), we can now calculate the radius of this tiny circular motion as:

(3a) ħ = E/ω = E·a/c a = (ħ·c)/E

Because we know the mass of the electron is the inertial mass of the state of motion of the pointlike charge, we may use Einstein’s mass-energy equivalence relation to rewrite this as the Compton radius of the electron:

(3b) a = (ħ·c)/E = (ħ·c)/(me·c2) = ħ/(me·c)

Note that we only used two fundamental laws of Nature so far: the Planck-Einstein relation and Einstein’s mass-energy equivalence relation.

III. We must also be able to express the Planck-Einstein quantum as the product of the momentum (p) of the pointlike charge and some length λ:

(4) h = p·λ

The question here is: what length? The circumference of the loop, or its radius? The same geometric argument we used to derive the effective mass of the pointlike charge as it whizzes around at lightspeed around its center, tells us the centripetal force acts over a distance that is equal to two times the radius. Indeed, the relevant formula for the centripetal force is this:

(5) F = (mγ/me)·(E/a) = E/2a

We can therefore reduce Eq. (4) by dividing it by 2π. We then get reduced, angular or circular (as opposed to linear) concepts:

(6) ħ = (p·λ)/(2π) = (me·c/2)·(λ/π) = (me·c/2)·(2a) = me·c·a ⇔ ħ/a = me·c

We can verify the logic of our reasoning by substituting for the Compton radius:

ħ = p·λ = me·c·= me·c·a = me·c·ħ/(me·c) = ħ

IV. We can, finally, re-confirm the logic of our reason by re-deriving Einstein’s mass-energy equivalence relation as well as the Planck-Einstein relation using the ω = c/a and the ħ/a = me·c relations:

(7) ħ·ω = ħ·c/a = (ħ/ac = (me·cc = me·c2 = E

Of course, we note all of the formulas we have derived are interdependent. We, therefore, have no clear separation between axioms and derivations here. If anything, we are only explaining what Nature’s most fundamental laws (the Planck-Einstein relation and Einstein’s mass-energy equivalence relation) actually mean or represent. As such, all we have is a simple description of reality itself—at the smallest scale, of course! Everything that happens at larger scales involves Maxwell’s equations: that’s all electromagnetic in nature. No need for strong or weak forces, or for quarks—who invented that? Ehrenfest, Lorentz and all who suffered with truly understanding the de Broglie’s concept of the matter-wave might have been happier physicists if they would have seen these simple equations!

The gist of the matter is this: the intuition of Einstein and de Broglie in regard to the wave-nature of matter was, essentially, correct. However, de Broglie’s modeling of it as a wave packet was not: modeling matter-particles as some linear oscillation does not do the trick. It is extremely surprising no one thought of trying to think of some circular oscillation. Indeed, the interpretation of the elementary wavefunction as representing the mentioned Zitterbewegung of the electric charge solves all questions: it amounts to interpreting the real and imaginary part of the elementary wavefunction as the sine and cosine components of the orbital motion of a pointlike charge. We think that, in our 60-odd papers, we’ve shown such easy interpretation effectively does the trick of explaining all of the quantum-mechanical weirdness but, of course, it is up to our readers to judge that. 🙂

[1] See: John Stewart Bell, Speakable and unspeakable in quantum mechanics, pp. 169–172, Cambridge University Press, 1987 (quoted from Wikipedia). J.S. Bell died from a cerebral hemorrhage in 1990 – the year he was nominated for the Nobel Prize in Physics and which he, therefore, did not receive (Nobel Prizes are not awarded posthumously). He was just 62 years old then.

Re-writing Feynman’s Lectures?

I have a crazy new idea: a complete re-write of Feynman’s Lectures. It would be fun, wouldn’t it? I would follow the same structure—but start with Volume III, of course: the lectures on quantum mechanics. We could even re-use some language—although we’d need to be careful so as to keep Mr. Michael Gottlieb happy, of course. 🙂 What would you think of the following draft Preface, for example?

The special problem we try to get at with these lectures is to maintain the interest of the very enthusiastic and rather smart people trying to understand physics. They have heard a lot about how interesting and exciting physics is—the theory of relativity, quantum mechanics, and other modern ideas—and spend many years studying textbooks or following online courses. Many are discouraged because there are really very few grand, new, modern ideas presented to them. The problem is whether or not we can make a course which would save them by maintaining their enthusiasm.

The lectures here are not in any way meant to be a survey course, but are very serious. I thought it would be best to re-write Feynman’s Lectures to make sure that most of the above-mentioned enthusiastic and smart people would be able to encompass (almost) everything that is in the lectures. 🙂

This is the link to Feynman’s original Preface, so you can see how my preface compares to his: same-same but very different, they’d say in Asia. 🙂

[…]

Doesn’t that sound like a nice project? 🙂

Jean Louis Van Belle, 22 May 2020

Post scriptum: It looks like we made Mr. Gottlieb and/or MIT very unhappy already: the link above does not work for us anymore (see what we get below). That’s very good: it is always nice to start a new publishing project with a little controversy. 🙂 We will have to use the good old paper print edition. We recommend you buy one too, by the way. 🙂 I think they are just a bit over US$100 now. Well worth it!

To put the historical record straight, the reader should note we started this blog before Mr. Gottlieb brought Feynman’s Lectures online. We actually wonder why he would be bothered by us referring to it. That’s what classical textbooks are for, aren’t they? They create common references to agree or disagree with, and why put a book online if you apparently don’t want it to be read or discussed? Noise like this probably means I am doing something right here. 🙂

Post scriptum 2: Done ! Or, at least, the first chapter is done ! Have a look: here is the link on ResearchGate and this is the link on Phil Gibbs’ site. Please do let me know what you think of it—whether you like it or not or, more importantly, what logic makes sense and what doesn’t. 🙂

Gottlieb

Rutherford’s idea of an electron

Pre-scriptum (dated 27 June 2020): Two illustrations in this post were deleted by the dark force. We will not substitute them. The reference is given and it will help you to look them up yourself. In fact, we think it will greatly advance your understanding if you do so. Mr. Gottlieb may actually have done us a favor by trying to pester us.

Electrons, atoms, elementary particles and wave equations

The New Zealander Ernest Rutherford came to be known as the father of nuclear physics. He was the first to provide a reliable estimate of the order of magnitude of the size of the nucleus. To be precise, in the 1921 paper which we will discuss here, he came up with an estimate of about 15 fm for massive nuclei, which is the current estimate for the size of an uranium nucleus. His experiments also helped to significantly enhance the Bohr model of an atom, culminating – just before WW I started – in the Bohr-Rutherford model of an atom (E. Rutherford, Phil. Mag. 27, 488).

The Bohr-Rutherford model of an atom explained the (gross structure of the) hydrogen spectrum perfectly well, but it could not explain its finer structure—read: the orbital sub-shells which, as we all know now (but not very well then), result from the different states of angular momentum of an electron and the associated magnetic moment.

The issue is probably best illustrated by the two diagrams below, which I copied from Feynman’s Lectures. As you can see, the idea of subshells is not very relevant when looking at the gross structure of the hydrogen spectrum because the energy levels of all subshells are (very nearly) the same. However, the Bohr model of an atom—which is nothing but an exceedingly simple application of the E = h·f equation (see p. 4-6 of my paper on classical quantum physics)—cannot explain the splitting of lines for a lithium atom, which is shown in the diagram on the right. Nor can it explain the splitting of spectral lines when we apply a stronger or weaker magnetic field while exciting the atoms so as to induce emission of electromagnetic radiation.

Schrödinger’s wave equation solves that problem—which is why Feynman and other modern physicists claim this equation is “the most dramatic success in the history of the quantum mechanics” or, more modestly, a “key result in quantum mechanics” at least!

Such dramatic statements are exaggerated. First, an even finer analysis of the emission spectrum (of hydrogen or whatever other atom) reveals that Schrödinger’s wave equation is also incomplete: the hyperfine splitting, the Zeeman splitting (anomalous or not) or the (in)famous Lamb shift are to be explained not only in terms of the magnetic moment of the electron but also in terms of the magnetic moment of the nucleus and its constituents (protons and neutrons)—or of the coupling between those magnetic moments (we may refer to our paper on the Lamb shift here). This cannot be captured in a wave equation: second-order differential equations are – quite simply – not sophisticated enough to capture the complexity of the atomic system here.

Also, as we pointed out previously, the current convention in regard to the use of the imaginary unit (i) in the wavefunction does not capture the spin direction and, therefore, makes abstraction of the direction of the magnetic moment too! The wavefunction therefore models theoretical spin-zero particles, which do not exist. In short, we cannot hope to represent anything real with wave equations and wavefunctions.

More importantly, I would dare to ask this: what use is an ‘explanation’ in terms of a wave equation if we cannot explain what the wave equation actually represents? As Feynman famously writes: “Where did we get it from? Nowhere. It’s not possible to derive it from anything you know. It came out of the mind of Schrödinger, invented in his struggle to find an understanding of the experimental observations of the real world.” Our best guess is that it, somehow, models (the local diffusion of) energy or mass densities as well as non-spherical orbital geometries. We explored such interpretations in our very first paper(s) on quantum mechanics, but the truth is this: we do not think wave equations are suitable mathematical tools to describe simple or complex systems that have some internal structure—atoms (think of Schrödinger’s wave equation here), electrons (think of Dirac’s wave equation), or protons (which is what some others tried to do, but I will let you do some googling here yourself).

We need to get back to the matter at hand here, which is Rutherford’s idea of an electron back in 1921. What can we say about it?

Rutherford’s contributions to the 1921 Solvay Conference

From what you know, and from what I write above, you will understand that Rutherford’s research focus was not on electrons: his prime interest was in explaining the atomic structure and in solving the mysteries of nuclear radiation—most notably the emission of alpha– and beta-particles as well as highly energetic gamma-rays by unstable or radioactive nuclei. In short, the nature of the electron was not his prime interest. However, this intellectual giant was, of course, very much interested in whatever experiment or whatever theory that might contribute to his thinking, and that explains why, in his contribution to the 1921 Solvay Conference—which materialized as an update of his seminal 1914 paper on The Structure of the Atom—he devotes considerable attention to Arthur Compton’s work on the scattering of light from electrons which, at the time (1921), had not even been published yet (Compton’s seminal article on (Compton) scattering was published in 1923 only).

It is also very interesting that, in the very same 1921 paper—whose 30 pages are more than a multiple of his 1914 article and later revisions of it (see, for example, the 1920 version of it, which actually has wider circulation on the Internet)—Rutherford also offers some short reflections on the magnetic properties of electrons while referring to Parson’s ring current model which, in French, he refers to as “l’électron annulaire de Parson.” Again, it is very strange that we should translate Rutherford’s 1921 remarks back in English—as we are sure the original paper must have been translated from English to French rather than the other way around.

However, it is what it is, and so here we do what we have to do: we give you a free translation of Rutherford’s remarks during the 1921 Solvay Conference on the state of research regarding the electron at that time. The reader should note these remarks are buried in a larger piece on the emission of β particles by radioactive nuclei which, as it turns out, are nothing but high-energy electrons (or their anti-matter counterpart—positrons). In fact, we should—before we proceed—draw attention to the fact that the physicists at the time had no clear notion of the concepts of protons and neutrons.

This is, indeed, another remarkable historical contribution of the 1921 Solvay Conference because, as far as I know, this is the first time Rutherford talks about the neutron hypothesis. It is quite remarkable he does not advance the neutron hypothesis to explain the atomic mass of atoms combining what we know think of as protons and neutrons (Rutherford regularly talks of a mix of ‘positive and negative electrons’ in the nucleus—neither the term proton or neutron was in use at the time) but as part of a possible explanation of nuclear fusion reactions in stars or stellar nebulae. This is, indeed, his response to a question during the discussions on Rutherford’s paper on the possibility of nuclear synthesis in stars or nebulae from the French physicist Jean Baptise Perrin who, independently from the American chemist William Draper Harkins, had proposed the possibility of hydrogen fusion just the year before (1919):

“We can, in fact, think of enormous energies being released from hydrogen nuclei merging to form helium—much larger energies than what can come from the Kelvin-Helmholtz mechanism. I have been thinking that the hydrogen in the nebulae might come from particles which we may refer to as ‘neutrons’: these would consist of a positive nucleus with an electron at an exceedingly small distance (“un noyau positif avec un électron à toute petite distance”). These would mediate the assembly of the nuclei of more massive elements. It is, otherwise, difficult to understand how the positively charged particles could come together against the repulsive force that pushes them apart—unless we would envisage they are driven by enormous velocities.”

We may add that, just to make sure he get this right, Rutherford is immediately requested to elaborate his point by the Danish physicist Martin Knudsen: “What’s the difference between a hydrogen atom and this neutron?”—which Rutherford simply answers as follows: “In a neutron, the electron would be very much closer to the nucleus.” In light of the fact that it was only in 1932 that James Chadwick would experimentally prove the existence of neutrons (and positively charged protons), we are, once again, deeply impressed by the the foresight of Rutherford and the other pioneers here: the predictive power of their theories and ideas is, effectively, truly amazing by any standard—including today’s. I should, perhaps, also add that I fully subscribe to Rutherford’s intuition that a neutron should be a composite particle consisting of a proton and an electron—but that’s a different discussion altogether.

We must come back to the topic of this post, which we will do now. Before we proceed, however, we should highlight one other contextual piece of information here: at the time, very little was known about the nature of α and β particles. We now know that beta-particles are electrons, and that alpha-particles combine two protons and two neutrons. That was not known in the 1920s, however: Rutherford and his associates could basically only see positive or negative particles coming out of these radioactive processes. This further underscores how much knowledge they were able to gain from rather limited sets of data.

Rutherford’s idea of an electron in 1921

So here is the translation of some crucial text. Needless to say, the italics, boldface and additions between [brackets] are not Rutherford’s but mine, of course.

“We may think the same laws should apply in regard to the scattering [“diffusion”] of α and β particles. [Note: Rutherford noted, earlier in his paper, that, based on the scattering patterns and other evidence, the force around the nucleus must respect the inverse square law near the nucleus—moreover, it must also do so very near to it.] However, we see marked differences. Anyone who has carefully studied the trajectories [photographs from the Wilson cloud chamber] of beta-particles will note the trajectories show a regular curvature. Such curved trajectories are even more obvious when they are illuminated by X-rays. Indeed, A.H. Compton noted that these trajectories seem to end in a converging helical path turning right or left. To explain this, Compton assumes the electron acts like a magnetic dipole whose axis is more or less fixed, and that the curvature of its path is caused by the magnetic field [from the (paramagnetic) materials that are used].

Further examination would be needed to make sure this curvature is not some coincidence, but the general impression is that the hypothesis may be quite right. We also see similar curvature and helicity with α particles in the last millimeters of their trajectories. [Note: α-particles are, obviously, also charged particles but we think Rutherford’s remark in regard to α particles also following a curved or helical path must be exaggerated: the order of magnitude of the magnetic moment of protons and neutrons is much smaller and, in any case, they tend to cancel each other out. Also, because of the rather enormous mass of α particles (read: helium nuclei) as compared to electrons, the effect would probably not be visible in a Wilson cloud chamber.]

The idea that an electron has magnetic properties is still sketchy and we would need new and more conclusive experiments before accepting it as a scientific fact. However, it would surely be natural to assume its magnetic properties would result from a rotation of the electron. Parson’s ring electron model [“électron annulaire“] was specifically imagined to incorporate such magnetic polarity [“polarité magnétique“].

A very interesting question here would be to wonder whether such rotation would be some intrinsic property of the electron or if it would just result from the rotation of the electron in its atomic orbital around the nucleus. Indeed, James Jeans usefully reminded me any asymmetry in an electron should result in it rotating around its own axis at the same frequency of its orbital rotation. [Note: The reader can easily imagine this: think of an asymmetric object going around in a circle and returning to its original position. In order to return to the same orientation, it must rotate around its own axis one time too!]

We should also wonder if an electron might acquire some rotational motion from being accelerated in an electric field and if such rotation, once acquired, would persist when decelerating in an(other) electric field or when passing through matter. If so, some of the properties of electrons would, to some extent, depend on their past.”

Each and every sentence in these very brief remarks is wonderfully consistent with modern-day modelling of electron behavior. We should add, of course, non-mainstream modeling of electrons but the addition is superfluous because mainstream physicists stubbornly continue to pretend electrons have no internal structure, and nor would they have any physical dimension. In light of the numerous experimental measurements of the effective charge radius as well as of the dimensions of the physical space in which photons effectively interfere with electrons, such mainstream assumptions seem completely ridiculous. However, such is the sad state of physics today.

Thinking backward and forward

We think that it is pretty obvious that Rutherford and others would have been able to adapt their model of an atom to better incorporate the magnetic properties not only of electrons but also of the nucleus and its constituents (protons and neutrons). Unfortunately, scientists at the time seem to have been swept away by the charisma of Bohr, Heisenberg and others, as well as by the mathematical brilliance of the likes of Sommerfeld, Dirac, and Pauli.

The road then was taken then has not led us very far. We concur with Oliver Consa’s scathing but essentially correct appraisal of the current sorry state of physics:

“QED should be the quantized version of Maxwell’s laws, but it is not that at all. QED is a simple addition to quantum mechanics that attempts to justify two experimental discrepancies in the Dirac equation: the Lamb shift and the anomalous magnetic moment of the electron. The reality is that QED is a bunch of fudge factors, numerology, ignored infinities, hocus-pocus, manipulated calculations, illegitimate mathematics, incomprehensible theories, hidden data, biased experiments, miscalculations, suspicious coincidences, lies, arbitrary substitutions of infinite values and budgets of 600 million dollars to continue the game. Maybe it is time to consider alternative proposals. Winter is coming.”

I would suggest we just go back where we went wrong: it may be warmer there, and thinking both backward as well as forward must, in any case, be a much more powerful problem solving technique than relying only on expert guessing on what linear differential equation(s) might give us some S-matrix linking all likely or possible initial and final states of some system or process. 🙂

Post scriptum: The sad state of physics is, of course, not limited to quantum electrodynamics only. We were briefly in touch with the PRad experimenters who put an end to the rather ridiculous ‘proton radius puzzle’ by re-confirming the previously established 0.83-0.84 range for the effective charge radius of a proton: we sent them our own classical back-of-the-envelope calculation of the Compton scattering radius of a proton based on the ring current model (see p. 15-16 of our paper on classical physics), which is in agreement with these measurements and courteously asked what alternative theories they were suggesting. Their spokesman replied equally courteously:

“There is no any theoretical prediction in QCD. Lattice [theorists] are trying to come up [with something] but that will take another decade before any reasonable  number [may come] from them.”

This e-mail exchange goes back to early February 2020. There has been no news since. One wonders if there is actually any real interest in solving puzzles. The physicist who wrote the above may have been nominated for a Nobel Prize in Physics—I surely hope so because, in contrast to some others, he and his team surely deserve one— but I think it is rather incongruous to finally firmly establish the size of a proton while, at the same time, admit that protons should not have any size according to mainstream theory—and we are talking the respected QCD sector of the equally respected Standard Model here!

We understand, of course! As Freddy Mercury famously sang: The Show Must Go On.

The metaphysics of physics

I just produced a first draft of the Metaphysics page of my new physics site. It does not only deal with the fundamental concepts we have been developing but – as importantly, if not more – it also offers some thoughts on all of the unanswered questions which, when trying to do science and be logical, are at least as important as the questions we do consider to be solved. Click the link or the tab. Enjoy ! 🙂 As usual, feedback is more than welcome!

The ultimate electron model

A rather eminent professor in physics – who has contributed significantly to solving the so-called ‘proton radius puzzle’ – advised me to not think of the anomalous magnetic moment of the electron as an anomaly. It led to a breakthrough in my thinking of what an electron might actually be. The fine-structure constant should be part and parcel of the model, indeed. Check out my last paper ! I’d be grateful for comments !

I know the title of this post sounds really arrogant. It is what it is. Whatever brain I have has been thinking about these issues consciously and unconsciously for many years now. It looks good to me. When everything is said and done, the function of our mind is to make sense. What’s sense-making? I’d define sense-making as creating consistency between (1) the structure of our ideas and theories (which I’ll conveniently define as ‘mathematical’ here) and (2) what we think of as the structure of reality (which I’ll define as ‘physical’).

I started this blog reading Penrose (see the About page of this blog). And then I just put his books aside and started reading Feynman. I think I should start re-reading Penrose. His ‘mind-physics-math’ triangle makes a lot more sense to me now.

JL

PS: I agree the title of my post is excruciatingly arrogant but – believe me – I could have chosen an even more arrogant title. Why? Because I think my electron model actually explains mass. And it does so in a much more straightforward manner than Higgs, or Brout–Englert–Higgs, or Englert–Brout–Higgs–Guralnik–Hagen–Kibble, Anderson–Higgs, Anderson–Higgs–Kibble, Higgs–Kibble, or ABEGHHK’t (for Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble, and ‘t Hooft) do. [I am just trying to attribute the theory here using the Wikipedia article on it.]