Quantum math revisited

It’s probably good to review the concepts we’ve learned so far. Let’s start with the foundation of all of our math, i.e. the concept of the state, or the state vector. [The difference between the two concepts is subtle but real. I’ll come back to it.]

State vectors and base states

We used Dirac’s bra-ket notation to denote a state vector, in general, as | ψ 〉. The obvious question is: what is this thing? We called it a vector because we use it like a vector: we multiply it with some number, and then add it to some other vector. So that’s just what you did in high school, when you learned about real vector spaces. In this regard, it is good to remind you of the definition of a vector space. To put it simply, it is is a collection of objects called vectors, which may be added together, and multiplied by numbers. So we have two things here: the ‘objects’, and the ‘numbers’. That’s why we’d say that we have some vector space over a field of numbers. [The term ‘field’ just refers to an algebraic structure, so we can add and multiply and what have you.] Of course, what it means to ‘add’ two ‘objects’, and what it means to ‘multiply’ an object with a number, depends on the type of objects and, unsurprisingly, the type of numbers.

Huh? The type of number?! A number is a number, no?

No, hombre, no! We’ve got natural numbers, rational numbers, real numbers, complex numbers—and you’ve probably heard of quaternions too – and, hence, ‘multiplying’ a ‘number’ with ‘something else’ can mean very different things. At the same time, the general idea is the general idea, so that’s the same, indeed. 🙂 When using real numbers and the kind of vectors you are used to (i.e. Euclidean vectors), then the multiplication amounts to a re-scaling of the vector, and so that’s why a real number is often referred to as a scalar. At the same time, anything that can be used to multiply a vector is often referred to as a scalar in math so… Well… Terminology is often quite confusing. In fact, I’ll give you some more examples of confusing terminology in a moment. But let’s first look at our ‘objects’ here, i.e. our ‘vectors’.

I did a post on Euclidean and non-Euclidean vector spaces two years ago, when I started this blog, but state vectors are obviously very different ‘objects’. They don’t resemble the vectors we’re used to. We’re used to so-called polar vectors, aka as real vectors, like the position vector (x or r), or the momentum vector (p = m·v), or the electric field vector (E). We are also familiar with the so-called pseudo-vectors, aka as axial vectors, like angular momentum (L = r×p), or the magnetic dipole moment. [Unlike what you might think, not all vector cross products yield a pseudo-vector. For example, the cross-product of a polar and an axial vector yields a polar vector.] But here we are talking some very different ‘object’. In math, we say that state vectors are elements in a Hilbert space. So a Hilbert space is a vector space but… Well… With special vectors. 🙂

The key to understanding why we’d refer to states as state vectors is the fact that, just like Euclidean vectors, we can uniquely specify any element in a Hilbert space with respect to a set of base states. So it’s really like using Cartesian coordinates in a two- or three-dimensional Euclidean space. The analogy is complete because, even in the absence of a geometrical interpretation, we’ll require those base states to be orthonormal. Let me be explicit on that by reminding you of your high-school classes on vector analysis: you’d choose a set of orthonormal base vectors e1e2, and e3, and you’d write any vector A as:

A = (Ax, Ay, Az) = Ax·e1 + Ay·e2 + Az·e3 with ei·ej = 1 if i = j, and ei·ej = 0 if i ≠ j

The ei·ej = 1 if i = j and ei·ej = 0 if i ≠ j condition expresses the orthonormality condition: the base vectors need to be orthogonal unit vectors. We wrote it as ei·ej = δij using the Kronecker delta ij = 1 if i = j and 0 if i ≠ j). Now, base states in quantum mechanics do not necessarily have a geometrical interpretation. Indeed, although one often can actually associate them with some position or direction in space, the condition of orthonormality applies in the mathematical sense of the word only. Denoting the base states by i = 1, 2,… – or by Roman numerals, like I and II – so as to distinguish them from the Greek ψ or φ symbols we use to denote state vectors in general, we write the orthonormality condition as follows:

〈 i | j 〉 = δij, with δij = δji is equal to 1 if i = j, and zero if i ≠ j

Now, you may grumble and say: that 〈 i | j 〉 bra-ket does not resemble the ei·ej product. Well… It does and it doesn’t. I’ll show why in a moment. First note how we uniquely specify state vectors in general in terms of a set of base states. For example, if we have two possible base states only, we’ll write:

| φ 〉 = | 1 〉 C1 + | 2 〉 C2

Or, if we chose some other set of base states | I 〉 and | II 〉, we’ll write:

| φ 〉 = | I 〉 CI + | II 〉 CII

You should note that the | 1 〉 C1 term in the | φ 〉 = | 1 〉 C1 + | 2 〉 C2 sum is really like the Ax·e1 product in the A = Ax·e1 + Ay·e2 + Az·e3 expression. In fact, you may actually write it as C1·| 1 〉, or just reverse the order and write C1| 1 〉. However, that’s not common practice and so I won’t do that, except occasionally. So you should look at | 1 〉 C1 as a product indeed: it’s the product of a base state and a complex number, so it’s really like m·v, or whatever other product of some scalar and some vector, except that we’ve got a complex scalar here. […] Yes, I know the term ‘complex scalar’ doesn’t make sense, but I hope you know what I mean. 🙂

More generally, we write:


Writing our state vector | ψ 〉, | φ 〉 or | χ 〉 like this also defines these coefficients or coordinates Ci. Unlike our state vectors, or our base states, Cis an actual number. It has to be, of course: it’s the complex number that makes sense of the whole expression. To be precise, Cis an amplitude, or a wavefunction, i.e. a function depending on both space and time. In our previous posts, we limited the analysis to amplitudes varying in time only, and we’ll continue to do so for a while. However, at some point, you’ll get the full picture.

Now, what about the supposed similarity between the 〈 i | j〉 bra-ket and the ei·ej product? Let me invoke what Feynman, tongue-in-cheek as usual, refers to as the Great Law of Quantum Mechanics:


You get this by taking | ψ 〉 out of the | ψ 〉 = ∑| i 〉〈 i | ψ 〉 expression. And, no, don’t say: what nonsense! Because… Well… Dirac’s notation really is that simple and powerful! You just have to read it from right to left. There’s an order to the symbols, unlike what you’re used to in math, because you’re used to operations that are commutative. But I need to move on. The upshot is that we can specify our base states in terms of the base states too. For example, if we have only two base states, let’s say I and II, then we can write:

| I 〉 = ∑| i 〉〈 i | 1 〉 = 1·| I 〉 + 0·| II 〉 and | II 〉 = ∑| i 〉〈 i | II 〉 = 0·| 1 〉 + 0·| II 〉

We can write this using a matrix notation:

M1Now that is silly, you’ll say. What’s the use of this? It doesn’t tell us anything new, and it also does not show us why we should think of the 〈 i | j 〉 bra-ket and the ei·ej product as being similar! Well… Yes and no. Let me show you something else. Let’s assume we’ve got some state χ and φ, which we specify in terms of our chosen set of base states as | χ 〉 = ∑ | i 〉 Di and | φ 〉 = ∑ | i 〉 Ci respectively. Now, from our post on quantum math, you’ll remember that 〈 χ | i 〉 and 〈 i | χ 〉 are each other’s complex conjugates, so we know that 〈 χ | i 〉 = 〈 i | χ 〉* = Di*. So if we have all Ci = 〈 i | φ 〉 and all Di = 〈 i | χ 〉, i.e. the ‘components’ of both states in terms of our base states, then we can calculate 〈 χ | φ 〉 – i.e. the amplitude to go from some state φ to some state χ as:

〈 χ | φ 〉 = ∑〈 χ | i 〉〈 i | φ 〉 =∑ Di*C= ∑ Di*〈 i | φ 〉

We can now scrap | φ 〉 in this expression – yes, it’s the power of Dirac’s notation once more! – so we get:


Now, we can re-write this using a matrix notation:


[I assumed that we have three base states now, so as to make the example somewhat less obvious. Please note we can never leave one of the base states out when specifying a state vector, so it’s not like the previous example was not complete. I’ll switch from two-state to three-state systems and back again all the time, so as to show the analysis is pretty general. To visualize things, think of the ammonia molecule as an example of a two-state system versus the spin of a proton or an electron as a three-state system, respectively. OK. Let’s get back to the lesson.]

You’ll say: so what? Well… Look at this:


I just combined the notations for 〈 I | and | III 〉. Can you now see the similarity between the the 〈 i | j〉 bra-ket and the ei·ej product? It really is the same: you just need to respect the subtleties in regard to writing the 〈 i | and | j 〉 vector, or the eand ej vectors, as a row vector or a column vector respectively.

It doesn’t stop here, of course. When learning about vectors in high school, we also learned that we could go from one set of base vectors to another by a transformation, such as, for example, a rotation, or a translation. We showed how a rotation worked in one of our post on two-state systems, where we wrote:


So we’ve got that transformation matrix, which, of course, isn’t random. To be precise, we got the matrix equation above (note that we’re back to two states only, so as to simplify) because we defined the Cand CII coefficients in the | φ 〉 = | I 〉 CI + | II 〉 CII = | 1 〉 C1 + | 2 〉 C2 expression as follows:

  • C= 〈 I | ψ 〉 = (1/√2)·(C1 − C2)
  • CII = 〈 II | ψ 〉 = (1/√2)·(C1 + C2)

The (1/√2) factor is there because of the normalization condition, and the two-by-two matrix equals the transformation matrix for a rotation of a state filtering apparatus about the y-axis, over an angle equal to (minus) 90 degrees, which we wrote as:


I promised I’d say something more about confusing terminology so let me do that here. We call a set of base states a ‘representation‘, and writing a state vector in terms of a set of base states is often referred to as a ‘projection‘ of that state into the base set. Again, we can see it’s sort of a mathematical projection, rather than a geometrical one. But it makes sense. In any case, that’s enough on state vectors and base states.

Let me wrap it up by inserting one more matrix equation, which you should be able to reconstruct yourself:


The only thing we’re doing here is to substitute 〈 χ | and | φ 〉 for ∑ Dj*〈 j | and ∑ | i 〉 Ci respectively. All the rest follows. Finally, I promised I’d tell you the difference between a state and a state vector. It’s subtle and, in practice, the two concepts refer to the same. However, we write a state as a state, like ψ or, if it’s a base state, like I, or ‘up’, or whatever. When we say a state vector, then we think of a set of numbers. It may be a row vector, like the 〈 χ | row vector with the Di* coefficients, or a column vector, like the | φ 〉 column vector with the Di* coefficients. But so if we say vector, then we think of a one-dimensional array of numbers, while the state itself is… Well… The state. So that’s some reality in physics. So you might define the state vector as the set of numbers that describes the state. While the difference is subtle, it’s important. It’s also important to note that the 〈 χ | and | χ 〉 state vectors are different too. The former appears as the final state in an amplitude, while the latter describes the starting condition. The former is referred to as a bra in the 〈 χ | φ 〉 bra-ket, while the latter is a ket in the 〈 φ | χ 〉 = 〈 χ | φ 〉* amplitude. 〈 χ | is a row vector equal to ∑ Di*〈 i |, while | χ 〉 = ∑ D| χ 〉. So it’s quite different. More in general, we’d define bras and kets as row and column vectors respectively, so we write:


That makes it clear that a bra next to a ket is to be understood as a matrix multiplication. From what I wrote, it is also obvious that the conjugate transpose (which is also known as the Hermitian conjugate) of a bra is the corresponding ket and vice versa, so we write:


Let me formally define the conjugate or Hermitian transpose here: the conjugate transpose of an m-by-n matrix A with complex elements is the n-by-m matrix A† obtained from A by taking the transpose (so we write the rows as columns and vice versa) and then taking the complex conjugate of each element (i.e. we switch the sign of the imaginary part of the complex number). A† is read as ‘A dagger’, but mathematicians will usually denote it by A*. In fact, there are a lot of equivalent notations, as we can write:


OK. That’s it on this.

One more thing, perhaps. We’ll often have states, or base states, that make sense, in a physical sense, that is. But it’s not always the case: we’ll sometimes use base states that may not represent some situation we’re likely to encounter, but that make sense mathematically. We gave the example of the ‘mathematical’ | I 〉 and | II 〉 base states, versus the ‘physical’ | 1 〉 and | 2 〉 base states, in our post on the ammonia molecule, so I won’t say more about this here. Do keep it in mind though. Sometimes it may feel like nothing makes sense, physically, but it usually does mathematically and, therefore, all usually comes out alright in the end. 🙂 To be precise, what we did there, was to choose base states with a unambiguous, i.e. a definite, energy level. That made our calculations much easier, and the end result was the same, indeed!

So… Well… I’ll let this sink in, and move on to the next topic.

The Hamiltonian operator

In my post on the post on the Hamiltonian, I explained that those Ci and Di coefficients are usually a function of time, and how they can be determined. To be precise, they’re determined by a set of differential equations (i.e. equations involving a function and the derivative of that function) which we wrote as:


If we have two base states only, then this set of equations can be written as:

set - two-base

Two equations and two functions – C= C1(t) and C= C2(t) – so we should be able to solve this thing, right? Well… No. We don’t know those Hij coefficients. As I explained in that post, they also evolve in time, so we should write them as Hij(t) instead of Hij tout court, and so it messes the whole thing up. We have two equations and six functions really. Of course, there’s always a way out, but I won’t dwell on that here—not now at least. What I want to do here is look at the Hamiltonian as an operator.

We introduced operators – but not very rigorously – when explaining the Hamiltonian. We did so by ‘expanding’ our 〈 χ | φ 〉 amplitude as follows. We’d say the amplitude to find a ‘thing’ – like a particle, for example, or some system, of particles or other things – in some state χ at the time t = t2, when it was in some state φ state at the time t = t1 was equal to:


Now, a formula like this only makes sense because we’re ‘abstracting away’ from the base states, which we need to describe any state. Hence, to actually describe what’s going on, we have to choose some representation and expand this expression as follows:


That looks pretty monstrous, so we should write it all out. Using the matrix notation I introduced above, we can do that – let’s take a practical example with three base states once again – as follows:

Matrix U

Now, this still looks pretty monstrous, but just think of it. We’re just applying that ‘Great Law of Quantum Physics’ here, i.e. | = ∑ | i 〉〈 i | over all base states i. To be precise, we apply it to an 〈 χ | A | φ 〉 expression, and we do so twice, so we get:


Nothing more, nothing less. 🙂 Now, the idea of an operator is the result of being creative: we just drop the 〈 χ | state from the expression above to write:


Yes. I know. That’s a lot to swallow, but you’ll see it makes sense because of the Great Law of Quantum Mechanics:


Just think about it and continue reading when you’re ready. 🙂 The upshot is: we now think of the particle entering some ‘apparatus’ A in the state ϕ and coming out of A in some state ψ or, looking at A as an operator, we can generalize this. As Feynman puts it:

“The symbol A is neither an amplitude, nor a vector; it is a new kind of thing called an operator. It is something which “operates on” a state to produce a new state.”

Back to our Hamiltonian. Let’s go through the same process of ‘abstraction’. Let’s first re-write that ‘Hamiltonian equation’ as follows:


The Hij(t) are amplitudes indeed, and we can represent them in a 〈 i | Hij(t) | j 〉 matrix indeed! Now let’s take the first step in our ‘abstraction process’: let’s scrap the 〈 i | bit. We get:


We can, of course, also abstract away from the | j 〉 bit, so we get:


Look at this! The right-hand side of this expression is exactly the same as that A | χ 〉 format we presented when introducing the concept of an operator. [In fact, when I say you should ‘abstract away’ from the | j 〉 bit, then you should think of the ‘Great Law’ and that matrix notation above.] So H is an operator and, therefore, it’s something which operates on a state to produce a new state.

OK. Clear enough. But what’s that ‘state’ on the left-hand side? I’ll just paraphrase Feynman here, who says we should think of it as follows: “The time derivative of the state vector |ψ〉 times i is equal to what you get by (1) operating with the Hamiltonian operator H on each base state, (2) multiplying by the amplitude that ψ is in the state j (i.e. 〈j|ψ〉), and (1) summing over all j.” Alternatively, you can also say: “The time derivative, times iħ, of a state |ψ〉 is equal to what you get if you operate on it with the Hamiltonian.” Of course, that’s true for any state, so we can ‘abstract away’ the |ψ〉 bit too and, putting a little hat (^) over the operator to remind ourselves that it’s an operator (rather than just any matrix), we get the Hamiltonian operator equation:


Now, that’s all nice and great, but the key question, of course, is: what can you do with this? Well… It turns out his Hamiltonian operators is useful to calculate lots of stuff. In the first place, of course, it’s a useful operator in the context of those differential equations describing the dynamics of a quantum-mechanical system. When everything is said and done, those equations are the equivalent, in quantum physics, of the law of motion in classical physics. [And I am not joking here.]

In addition, the Hamiltonian operator also has other uses. The one I should really mention here is that you can calculate the average or expected value (EV[X]) of the energy  of a state ψ (i.e. any state, really) by first operating on | ψ 〉 with the Hamiltonian, and then multiplying 〈 ψ | with the result. That sounds a bit complicated, but you’ll understand it when seeing the mathematical expression, which we can write as:


The formula is pretty straightforward. [If you don’t think so, then just write it all out using the matrix notation.] But you may wonder how it works exactly… Well… Sorry. I don’t want to copy all of Feynman here, so I’ll refer you to him on this. In fact, the proof of this formula is actually very straightforward, and so you should be able to get through it with the math you got here. You may even understand Feynman’s illustration of it for the ‘special case’ when base states are, indeed, those mathematically convenient base states with definite energy levels.

Have fun with it! 🙂

Post scriptum on Hilbert spaces:

As mentioned above, our state vectors are actually functions. To be specific, they are wavefunctions, i.e. periodic functions, evolving in space and time, so we usually write them as ψ = ψ(x, t). Our ‘Hilbert space’, i.e. our collection of state vectors, is, therefore, often referred to as a function space. So it’s a set of functions. At the same time, it is a vector space too, because we have those addition and multiplication operations, so our function space has the algebraic structure of a vector space. As you can imagine, there are some mathematical conditions for a space or a set of objects to ‘qualify’ as a Hilbert space, and the epithet itself comes with a lot of interesting properties. One of them is completeness, which is a property that allows us to jot down those differential equations that describe the dynamics of a quantum-mechanical system. However, as you can find whatever you’d need or want to know about those mathematical properties on the Web, I won’t get into it. The important thing here is to understand the concept of a Hilbert space intuitively. I hope this post has helped you in that regard, at least. 🙂

Some content on this page was disabled on June 16, 2020 as a result of a DMCA takedown notice from The California Institute of Technology. You can learn more about the DMCA here:

Some content on this page was disabled on June 16, 2020 as a result of a DMCA takedown notice from The California Institute of Technology. You can learn more about the DMCA here:

Some content on this page was disabled on June 16, 2020 as a result of a DMCA takedown notice from The California Institute of Technology. You can learn more about the DMCA here:

Some content on this page was disabled on June 16, 2020 as a result of a DMCA takedown notice from The California Institute of Technology. You can learn more about the DMCA here:

Some content on this page was disabled on June 16, 2020 as a result of a DMCA takedown notice from The California Institute of Technology. You can learn more about the DMCA here:

Some content on this page was disabled on June 16, 2020 as a result of a DMCA takedown notice from The California Institute of Technology. You can learn more about the DMCA here:

Some content on this page was disabled on June 16, 2020 as a result of a DMCA takedown notice from The California Institute of Technology. You can learn more about the DMCA here:

Some content on this page was disabled on June 17, 2020 as a result of a DMCA takedown notice from Michael A. Gottlieb, Rudolf Pfeiffer, and The California Institute of Technology. You can learn more about the DMCA here:

Some content on this page was disabled on June 17, 2020 as a result of a DMCA takedown notice from Michael A. Gottlieb, Rudolf Pfeiffer, and The California Institute of Technology. You can learn more about the DMCA here:


A Royal Road to quantum physics?

Pre-script (dated 26 June 2020): This post has become less relevant because my views on all things quantum-mechanical have evolved significantly as a result of my progression towards a more complete realist (classical) interpretation of quantum physics. In addition, some of the material was removed by a dark force. Hence, we recommend you read our recent papers. I keep blog posts like these mainly because I want to keep track of where I came from. I might review them one day, but I currently don’t have the time or energy for it. 🙂

Original post:

It is said that, when Ptolemy asked Euclid to quickly explain him geometry, Euclid told the King that there was no ‘Royal Road’ to it, by which he meant it’s just difficult and takes a lot of time to understand.

Physicists will tell you the same about quantum physics. So, I know that, at this point, I should just study Feynman’s third Lectures Volume and shut up for a while. However, before I get lost while playing with state vectors, S-matrices, eigenfunctions, eigenvalues and what have you, I’ll try that Royal Road anyway, building on my previous digression on Hamiltonian mechanics.

So… What was that about? Well… If you understood anything from my previous post, it should be that both the Lagrangian and Hamiltonian function use the equations for kinetic and potential energy to derive the equations of motion for a system. The key difference between the Lagrangian and Hamiltonian approach was that the Lagrangian approach yields one differential equation–which had to be solved to yield a functional form for x as a function of time, while the Hamiltonian approach yielded two differential equations–which had to be solved to yield a functional form for both position (x) and momentum (p). In other words, Lagrangian mechanics is a model that focuses on the position variable(s) only, while, in Hamiltonian mechanics, we also keep track of the momentum variable(s). Let me briefly explain the procedure again, so we’re clear on it:

1. We write down a function referred to as the Lagrangian function. The function is L = T – V with T and V the kinetic and potential energy respectively. T has to be expressed as a function of velocity (v) and V has to be expressed as a function of position (x). You’ll say: of course! However, it is an important point to note, otherwise the following step doesn’t make sense. So we take the equations for kinetic and potential energy and combine them to form a function L = L(x, v).

2. We then calculate the so-called Lagrangian equation, in which we use that function L. To be precise: what we have to do is calculate its partial derivatives and insert these in the following equation:


It should be obvious now why I stressed we should write L as a function of velocity and position, i.e. as L = L(x, v). Otherwise those partial derivatives don’t make sense. As to where this equation comes from, don’t worry about it: I did not explain why this works. I didn’t do that here, and I also didn’t do it in my previous post. What we’re doing here is just explaining how it goes, not why.

3. If we’ve done everything right, we should get a second-order differential equation which, as mentioned above, we should then solve for x(t). That’s what ‘solving’ a differential equation is about: find a functional form that satisfies the equation.

Let’s now look at the Hamiltonian approach.

1. We write down a function referred to as the Hamiltonian function. It looks similar to the Lagrangian, except that we sum kinetic and potential energy, and that T has to be expressed as a function of the momentum p. So we have a function H = T + V = H(x, p).

2. We then calculate the so-called Hamiltonian equations, which is a set of two equations, rather than just one equation. [We have two for the one-dimensional situation that we are modeling here: it’s a different story (i.e. we will have more equations) if we’d have more degrees of freedom of course.] It’s the same as in the Lagrangian approach: it’s just a matter of calculating partial derivatives, and insert them in the equations below. Again, note that I am not explaining why this Hamiltonian hocus-pocus actually works. I am just saying how it works.

Hamiltonian equations

3. If we’ve done everything right, we should get two first-order differential equations which we should then solve for x(t) and p(t). Now, solving a set of equations may or may not be easy, depending on your point of view. If you wonder how it’s done, there’s excellent stuff on the Web that will show you how (such as, for instance, Paul’s Online Math Notes).

Now, I mentioned in my previous post that the Hamiltonian approach to modeling mechanics is very similar to the approach that’s used in quantum mechanics and that it’s therefore the preferred approach in physics. I also mentioned that, in classical physics, position and momentum are also conjugate variables, and I also showed how we can calculate the momentum as a conjugate variable from the Lagrangian: p = ∂L/∂v. However, I did not dwell on what conjugate variables actually are in classical mechanics. I won’t do that here either. Just accept that conjugate variables, in classical mechanics, are also defined as pairs of variables. They’re not related through some uncertainty relation, like in quantum physics, but they’re related because they can both be obtained as the derivatives of a function which I haven’t introduced as yet. That function is referred to as the action, but… Well… Let’s resist the temptation to digress any further here. If you really want to know what action is–in physics, that is… 🙂 Well… Google it, I’d say. What you should take home from this digression is that position and momentum are also conjugate variables in classical mechanics.

Let’s now move on to quantum mechanics. You’ll see that the ‘similarity’ in approach is… Well… Quite relative, I’d say. 🙂

Position and momentum in quantum mechanics

As you know by now (I wrote at least a dozen posts on this), the concept of position and momentum in quantum mechanics is very different from that in classical physics: we do not have x(t) and p(t) functions which give a unique, precise and unambiguous value for x and p when we assign a value to the time variable and plug it in. No. What we have in quantum physics is some weird wave function, denoted by the Greek letters φ (phi) or ψ (psi) or, using Greek capitals, Φ and Ψ. To be more specific, the psi usually denotes the wave function in the so-called position space (so we write ψ = ψ(x)), and the phi will usually denote the wave function in the so-called momentum space (so we write φ = φ(p)). That sounds more complicated than it is, obviously, but I just wanted to respect terminology here. Finally, note that the ψ(x) and φ(p) wave functions are related through the Uncertainty Principle: they’re conjugate variables, and we have this ΔxΔp = ħ/2 equation, in which the Δ is some standard deviation from some mean value. I should not go into more detail here: you know that by now, don’t you?

While the argument of these functions is some real number, the wave functions themselves are complex-valued, so they have a real and complex amplitude. I’ve also illustrated that a couple of times already but, just to make sure, take a look at the animation below, so you know what we are sort of talking about:

  1. The A and B situations represent a classical oscillator: we know exactly where the red ball is at any point in time.
  2. The C to H situations give us a complex-valued amplitude, with the blue oscillation as the real part, and the pink oscillation as the imaginary part.

QuantumHarmonicOscillatorAnimationSo we have such wave function both for x and p. Note that the animation above suggests we’re only looking at the wave function for x but–trust me–we have a similar one for p, and they’re related indeed. [To see how exactly, I’d advise you to go through the proof of the so-called Kennard inequality.] So… What do we do with that?

The position and momentum operators

When we want to know where a particle actually is, or what its momentum is, we need to do something with this wave function ψ or φ. Let’s focus on the position variable first. While the wave function itself is said to have ‘no physical interpretation’ (frankly, I don’t know what that means: I’d think everything has some kind of interpretation (and what’s physical and non-physical?), but let’s not get lost in philosophy here), we know that the square of the absolute value of the probability amplitude yields a probability density. So |ψ(x)|gives us a probability density function or, to put it simply, the probability to find our ‘particle’ (or ‘wavicle’ if you want) at point x. Let’s now do something more sophisticated and write down the expected value of x, which is usually denoted by 〈x〉 (although that invites confusion with Dirac’s bra-ket notation, but don’t worry about it):

expected value of x

Don’t panic. It’s just an integral. Look at it. ψ* is just the complex conjugate (i.e. a – ib if ψ = a + ib) and you will (or should) remember that the product of a complex number with its (complex) conjugate gives us the square of its absolute value: ψ*ψ = |ψ(x)|2. What about that x? Can we just insert that there, in-between ψ* and ψ ? Good question. The answer is: yes, of course! That x is just some real number and we can put it anywhere. However, it’s still a good question because, while multiplication of complex numbers is commutative (hence,  z1z2 = z2z1), the order of our operators – which we will introduce soon – can often not be changed without consequences, so it is something to note.

For the rest, that integral above is quite obvious and it should really not puzzle you: we just multiply a value with its probability of occurring and integrate over the whole domain to get an expected value 〈x〉. Nothing wrong here. Note that we get some real number. [You’ll say: of course! However, I always find it useful to check that when looking at those things mixing complex-valued functions with real-valued variables or arguments. A quick check on the dimensions of what we’re dealing helps greatly in understanding what we’re doing.]

So… You’ve surely heard about the position and momentum operators already. Is that, then, what it is? Doing some integral on some function to get an expected value? Well… No. But there’s a relation. However, let me first make a remark on notation, because that can be quite confusing. The position operator is usually written with a hat on top of the variable – like ẑ – but so I don’t find a hat with every letter with the editor tool for this blog and, hence, I’ll use a bold letter x and p to denote the operator. Don’t confuse it with me using a bold letter for vectors though ! Now, back to the story.

Let’s first give an example of an operator you’re already familiar with in order to understand what an operator actually is. To put it simply: an operator is an instruction to do something with a function. For example: ∂/∂t is an instruction to differentiate some function with regard to the variable t (which usually stands for time). The ∂/∂t operator is obviously referred to as a differentiation operator. When we put a function behind, e.g. f(x, t), we get ∂f(x, t)/∂t, which is just another function in x and t.

So we have the same here: x in itself is just an instruction: you need to put a function behind in order to get some result. So you’ll see it as xψ. In fact, it would be useful to use brackets probably, like x[ψ], especially because I can’t put those hats on the letters here, but I’ll stick to the usual notation, which does not use brackets.

Likewise, we have a momentum operator: p = –iħ∂/∂x. […] Let it sink in. [..]

What’s this? Don’t worry about it. I know: that looks like a very different animal than that x operator. I’ll explain later. Just note, for the moment, that the momentum operator (also) involves a (partial) derivative and, hence, we refer to it as a differential operator (as opposed to differentiation operator). The instruction p = –iħ∂/∂x basically means: differentiate the function with regard to x and multiply with iħ (i.e. the product of Planck’s constant and the imaginary unit i). Nothing wrong with that. Just calculate a derivative and multiply with a tiny imaginary (complex) number.

Now, back to the position operator x. As you can see, that’s a very simple operator–much simpler than the momentum operator in any case. The position operator applied to ψ yields, quite simply, the xψ(x) factor in the integrand above. So we just get a new function xψ(x) when we apply x to ψ, of which the values are simply the product of x and ψ(x). Hence, we write xψ = xψ.

Really? Is it that simple? Yes. For now at least. 🙂

Back to the momentum operator. Where does that come from? That story is not so simple. [Of course not. It can’t be. Just look at it.] Because we have to avoid talking about eigenvalues and all that, my approach to the explanation will be quite intuitive. [As for ‘my’ approach, let me note that it’s basically the approach as used in the Wikipedia article on it. :-)] Just stay with me for a while here.

Let’s assume ψ is given by ψ = ei(kx–ωt). So that’s a nice periodic function, albeit complex-valued. Now, we know that functional form doesn’t make all that much sense because it corresponds to the particle being everywhere, because the square of its absolute value is some constant. In fact, we know it doesn’t even respect the normalization condition: all probabilities have to add up to 1. However, that being said, we also know that we can superimpose an infinite number of such waves (all with different k and ω) to get a more localized wave train, and then re-normalize the result to make sure the normalization condition is met. Hence, let’s just go along with this idealized example and see where it leads.

We know the wave number k (i.e. its ‘frequency in space’, as it’s often described) is related to the momentum p through the de Broglie relation: p = ħk. [Again, you should think about a whole bunch of these waves and, hence, some spread in k corresponding to some spread in p, but just go along with the story for now and don’t try to make it even more complicated.] Now, if we differentiate with regard to x, and then substitute, we get ∂ψ/∂x = ∂ei(kx–ωt)/∂x = ikei(kx–ωt) = ikψ, or


So what is this? Well… On the left-hand side, we have the (partial) derivative of a complex-valued function (ψ) with regard to x. Now, that derivative is, more likely than not, also some complex-valued function. And if you don’t believe me, just look at the right-hand side of the equation, where we have that i and ψ. In fact, the equation just shows that, when we take that derivative, we get our original function ψ but multiplied by ip/ħ. Hey! We’ve got a differential equation here, don’t we? Yes. And the solution for it is… Well… The natural exponential. Of course! That should be no surprise because we started out with a natural exponential as functional form! So that’s not the point. What is the point, then? Well… If we bring that i/ħ factor to the other side, we get:

(–i/ħ)(∂ψ/∂x) = pψ

[If you’re confused about the –i, remember that i–1 = 1/i = –i.] So… We’ve got pψ on the right-hand side now. So… Well… That’s like xψ, isn’t it? Yes. 🙂 If we define the momentum operator as p = (–i/ħ)(∂/∂x), then we get pψ = pψ. So that’s the same thing as for the position operator. It’s just that p is… Well… A more complex operator, as it has that –i/ħ factor in it. And, yes, of course it also involves an instruction to differentiate, which also sets it apart from the position operator, which is just an instruction to multiply the function with its argument.

I am sure you’ll find this funny–perhaps even fishy–business. And, yes, I have the same questions: what does it all mean? I can’t answer that here. As for now, just accept that this position and momentum operator are what they are, and that I can’t do anything about that. But… I hear you sputter: what about their interpretation? Well… Sorry… I could say that the functions xψ and pψ are so-called linear maps but that is not likely to help you much in understanding what these operators really do. You – and I for sure 🙂 – will indeed have to go through that story of eigenvalues to a somewhat deeper understanding of what these operators actually are. That’s just how it is. As for now, I just have to move on. Sorry for letting you down here. 🙂

Energy operators

Now that we sort of ‘understand’ those position and momentum operators (or their mathematical form at least), it’s time to introduce the energy operators. Indeed, in quantum mechanics, we’ve also got an operator for (a) kinetic energy, and for (b) potential energy. These operators are also denoted with a hat above the T and V symbol. All quantum-mechanical operators are like that, it seems. However, because of the limitations of the editor tool here, I’ll also use a bold T and V respectively. Now, I am sure you’ve had enough of this operators, so let me just jot them down:

  1. V = V, so that’s just an instruction to multiply a function with V = V(x, t). That’s easy enough because that’s just like the position vector.
  2. As for T, that’s more complicated. It involves that momentum operator p, which was also more complicated, remember? Let me just give you the formula:

T = p/2m = p2/2m.

So we multiply the operator p with itself here. What does that mean? Well… Because the operator involves a derivative, it means we have to take the derivative twice and… No ! Well… Let me correct myself: yes and no. 🙂 That p·p product is, strictly speaking, a dot product between two vectors, and so it’s not just a matter of differentiating twice. Now that we are here, we may just as well extend the analysis a bit and assume that we also have a y and z coordinate, so we’ll have a position vector r = (x, y, z). [Note that r is a vector here, not an operator. !?! Oh… Well…] Extending the analysis to three (or more) dimensions means that we should replace the differentiation operator by the so-called gradient or del operator: ∇ = (∂/∂x, ∂/∂y, ∂/∂z). And now that dot product p will, among other things, yield another operator which you’re surely familiar with: the Laplacian. Let me remind you of it:


Hence, we can write the kinetic energy operator T as:

Kinetic energy operator

I quickly copied this formula from Wikipedia, which doesn’t have the limitation of the WordPress editor tool, and so you see it now the way you should see it, i.e. with the hat notation. 🙂


In case you’re despairing, hang on ! We’re almost there. 🙂 We can, indeed, now define the Hamiltonian operator that’s used in quantum mechanics. While the Hamiltonian function was the sum of the potential and kinetic energy functions in classical physics, in quantum mechanics we add the two energy operators. You’ll grumble and say: that’s not the same as adding energies. And you’re right: adding operators is not the same as adding energy functions. Of course it isn’t. 🙂 But just stick to the story, please, and stop criticizing. [Oh – just in case you wonder where that minus sign comes from: i2 = –1, of course.]

Adding the two operators together yields the following:

Hamiltonian operator

So. Yes. That’s the famous Hamiltonian operator.

OK. So what?

Yes…. Hmm… What do we do with that operator? Well… We apply it to the function and so we write Hψ = … Hmm…

Well… What? 

Well… I am not writing this post just to give some definitions of the type of operators that are used in quantum mechanics and then just do obvious stuff by writing it all out. No. I am writing this post to illustrate how things work.

OK. So how does it work then? 

Well… It turns out that, in quantum mechanics, we have similar equations as in classical mechanics. Remember that I just wrote down the set of (two) differential equations when discussing Hamiltonian mechanics? Here I’ll do the same. The Hamiltonian operator appears in an equation of which you’ve surely heard of and which, just like me, you’d love to understand–and then I mean: understand it fully, completely, and intuitively. […] Yes. It’s the Schrödinger equation:

schrodinger 1

Note, once again, I am not saying anything about where this equation comes from. It’s like jotting down that Lagrange equation, or the set of Hamiltonian equations: I am not saying anything about the why of all this hocus pocus. I am just saying how it goes. So we’ve got another differential equation here, and we have to solve it. If we all write it out using the above definition of the Hamiltonian operator, we get:

Schrodinger 2

If you’re still with me, you’ll immediately wonder about that μ. Well… Don’t. It’s the mass really, but the so-called reduced mass. Don’t worry about it. Just google it if you want to know more about this concept of a ‘reduced’ mass: it’s a fine point which doesn’t matter here really. The point is the grand result.

But… So… What is the grand result? What are we looking at here? Well… Just as I said above: that Schrödinger equation is a differential equation, just like those equations we got when applying the Lagrangian and Hamiltonian approach to modeling a dynamic system in classical mechanics, and, hence, just like what we (were supposed to) do there, we have to solve it. 🙂 Of course, it looks much more daunting than our Lagrangian or Hamiltonian differential equations, because we’ve got complex-valued functions here, and you’re probably scared of that iħ factor too. But you shouldn’t be. When everything is said and done, we’ve got a differential equation here that we need to solve for ψ. In other words, we need to find functional forms for ψ that satisfy the above equation. That’s it. Period.

So how do these solutions look like? Well, they look like those complex-valued oscillating things in the very first animation above. Let me copy them again:


So… That’s it then? Yes. I won’t say anything more about it here, because (1) this post has become way too long already, and so I won’t dwell on the solutions of that Schrödinger equation, and because (2) I do feel it’s about time I really start doing what it takes, and that’s to work on all of the math that’s necessary to actually do all that hocus-pocus. 🙂

Post scriptum: As for understanding the Schrödinger equation “fully, completely, and intuitively”, I am not sure that’s actually possible. But I am trying hard and so let’s see. 🙂 I’ll tell you after I mastered the math. But something inside of me tells me there’s indeed no Royal Road to it. 🙂

Post scriptum 2 (dated 16 November 2015): I’ve added this post scriptum, more than a year later after writing all of the above, because I now realize how immature it actually is. If you really want to know more about quantum math, then you should read my more recent posts, like the one on the Hamiltonian matrix. It’s not that anything that I write above is wrong—it isn’t. But… Well… It’s just that I feel that I’ve jumped the gun. […] But then that’s probably not a bad thing. 🙂

Some content on this page was disabled on June 17, 2020 as a result of a DMCA takedown notice from Michael A. Gottlieb, Rudolf Pfeiffer, and The California Institute of Technology. You can learn more about the DMCA here:

Some content on this page was disabled on June 17, 2020 as a result of a DMCA takedown notice from Michael A. Gottlieb, Rudolf Pfeiffer, and The California Institute of Technology. You can learn more about the DMCA here: