A new book?

I don’t know where I would start a new story on physics. I am also not quite sure for whom I would be writing it – although it would be for people like me, obviously: most of what we do, we do for ourselves, right? So I should probably describe myself in order to describe the audience: amateur physicists who are interested in the epistemology of modern physics – or its ontology, or its metaphysics. I also talk about the genealogy or archaeology of ideas on my ResearchGate site. All these words have (slightly) different meanings but the distinctions do not matter all that much. The point is this: I write for people who want to understand physics in pretty much the same way as the great classical physicist Hendrik Antoon Lorentz who, just a few months before his demise, at the occasion of the (in)famous 1927 Solvay Conference, wanted to understand the ‘new theories’:

“We are representing phenomena. We try to form an image of them in our mind. Till now, we always tried to do using the ordinary notions of space and time. These notions may be innate; they result, in any case, from our personal experience, from our daily observations. To me, these notions are clear, and I admit I am not able to have any idea about physics without those notions. The image I want to have when thinking physical phenomena has to be clear and well defined, and it seems to me that cannot be done without these notions of a system defined in space and in time.”

Note that H.A. Lorentz understood electromagnetism and relativity theory as few others did. In fact, judging from some of the crap out there, I can safely say he understood stuff as few others do today still. Hence, he should surely not be thought of as a classical physicist who, somehow, was stuck. On the contrary: he understood the ‘new theories’ better than many of the new theorists themselves. In fact, as far as I am concerned, I think his comments or conclusions on the epistemological status of the Uncertainty Principle – which he made in the same intervention – still stand. Let me quote the original French:

“Je pense que cette notion de probabilité [in the new theories] serait à mettre à la fin, et comme conclusion, des considérations théoriques, et non pas comme axiome a priori, quoique je veuille bien admettre que cette indétermination correspond aux possibilités expérimentales. Je pourrais toujours garder ma foi déterministe pour les phénomènes fondamentaux, dont je n’ai pas parlé. Est-ce qu’un esprit plus profond ne pourrait pas se rendre compte des mouvements de ces électrons. Ne pourrait-on pas garder le déterminisme en en faisant l’objet d’une croyance? Faut-il nécessairement ériger l’ indéterminisme en principe?”

What a beautiful statement, isn’t it? Why should we elevate indeterminism to a philosophical principle? Indeed, now that I’ve inserted some French, I may as well inject some German. The idea of a particle includes the idea of a more or less well-known position. Let us be specific and think of uncertainty in the context of position. We may not fully know the position of a particle for one or more of the following reasons:

  1. The precision of our measurements may be limited: this is what Heisenberg referred to as an Ungenauigkeit.
  2. Our measurement might disturb the position and, as such, cause the information to get lost and, as a result, introduce an uncertainty: this is what we may translate as an Unbestimmtheit.
  3. The uncertainty may be inherent to Nature, in which case we should probably refer to it as an Ungewissheit.

So what is the case? Lorentz claims it is either the first or the second – or a combination of both – and that the third proposition is a philosophical statement which we can neither prove nor disprove. I cannot see anything logical (theory) or practical (experiment) that would invalidate this point. I, therefore, intend to write a basic book on quantum physics from what I hope would be Lorentz’ or Einstein’s point of view.

My detractors will immediately cry wolf: Einstein lost the discussions with Bohr, didn’t he? I do not think so: he just got tired of them. I want to try to pick up the story where he left it. Let’s see where I get. 🙂

The End of Physics

There is an army of physicists out there – still – trying to convince you there is still some mystery that needs explaining. They are wrong: quantum-mechanical weirdness is weird, but it is not some mystery. We have a decent interpretation of what quantum-mechanical equations – such as Schrodinger’s equation, for example – actually mean. We can also understand what photons, electrons, or protons – light and matter – actually are, and such understanding can be expressed in terms of 3D space, time, force, and charge: elementary concepts that feel familiar to us. There is no mystery left.

Unfortunately, physicists have completely lost it: they have multiplied concepts and produced a confusing but utterly unconvincing picture of the essence of the Universe. They promoted weird mathematical concepts – the quark hypothesis is just one example among others – and gave them some kind of reality status. The Nobel Prize Committee then played the role of the Vatican by canonizing the newfound religion.

It is a sad state of affairs, because we are surrounded by too many lies already: the ads and political slogans that shout us in the face as soon as we log on to Facebook to see what our friends are up to, or to YouTube to watch something or – what I often do – listen to the healing sounds of music.

The language and vocabulary of physics are complete. Does it make us happier beings? It should, shouldn’t it? I am happy I understand. I find consciousness fascinating – self-consciousness even more – but not because I think it is rooted in mystery. No. Consciousness arises from the self-organization of matter: order arising from chaos. It is a most remarkable thing – and it happens at all levels: atoms in molecules, molecules forming cellular systems, cellular systems forming biological systems. We are a biological system which, in turn, is part of much larger systems: biological, ecological – material systems. There is no God talking to us. We are on our own, and we must make the best out of it. We have everything, and we know everything.

Sadly, most people do not realize.

Post scriptum: With the end of physics comes the end of technology as well, isn’t it? All of the advanced technologies in use today are effectively already described in Feynman’s Lectures on Physics, which were written and published in the first half of the 1960s.

I thought about possible counterexamples, like optical-fiber cables, or the equipment that is used in superconducting quantum computing, such as Josephson junctions. But Feynman already describes Josephson junctions in the last chapter of his Lectures on Quantum Mechanics, which is a seminar on superconductivity. And fiber-optic cable is, essentially, a waveguide for light, which Feynman describes in very much detail in Chapter 24 of his Lectures on Electromagnetism and Matter. Needless to say, computers were also already there, and Feynman’s lecture on semiconductors has all you need to know about modern-day computing equipment. [In case you briefly thought about lasers, the first laser was built in 1960, and Feynman’s lecture on masers describes lasers too.]

So it is all there. I was born in 1969, when Man first walked on the Moon. CERN and other spectacular research projects have since been established, but, when one is brutally honest, one has to admit these experiments have not added anything significant – neither to the knowledge nor to the technology base of humankind (and, yes, I know your first instinct is to disagree with that, but that is because study or the media indoctrinated you that way). It is a rather strange thought, but I think it is essentially correct. Most scientists, experts and commentators are trying to uphold a totally fake illusion of progress.

The metaphysics of physics

I just produced a first draft of the Metaphysics page of my new physics site. It does not only deal with the fundamental concepts we have been developing but – as importantly, if not more – it also offers some thoughts on all of the unanswered questions which, when trying to do science and be logical, are at least as important as the questions we do consider to be solved. Click the link or the tab. Enjoy ! 🙂 As usual, feedback is more than welcome!

The Essence of Reality

Pre-script (dated 26 June 2020): This post got mutilated by the removal of some material by the dark force. You should be able to follow the main story line, however. If anything, the lack of illustrations might actually help you to think things through for yourself. In any case, we now have different views on these concepts as part of our realist interpretation of quantum mechanics, so we recommend you read our recent papers instead of these old blog posts.

Original post:

I know it’s a crazy title. It has no place in a physics blog, but then I am sure this article will go elsewhere. […] Well… […] Let me be honest: it’s probably gonna go nowhere. Whatever. I don’t care too much. My life is happier than Wittgenstein’s. 🙂

My original title for this post was: discrete spacetime. That was somewhat less offensive but, while being less offensive, it suffered from the same drawback: the terminology was ambiguous. The commonly accepted term for discrete spacetime is the quantum vacuum. However, because I am just an arrogant bastard trying to establish myself in this field, I am telling you that term is meaningless. Indeed, wouldn’t you agree that, if the quantum vacuum is a vacuum, then it’s empty. So it’s nothing. Hence, it cannot have any properties and, therefore, it cannot be discrete – or continuous, or whatever. We need to put stuff in it to make it real.

Therefore, I’d rather distinguish mathematical versus physical space. Of course, you are smart, and so you now you’ll say that my terminology is as bad as that of the quantum vacuumists. And you are right. However, this is a story that am writing, and so I will write it the way want to write it. 🙂 So where were we? Spacetime! Discrete spacetime.

Yes. Thank you! Because relativity tells us we should think in terms of four-vectors, we should not talk about space but about spacetime. Hence, we should distinguish mathematical spacetime from physical spacetime. So what’s the definitional difference?

Mathematical spacetime is just what it is: a coordinate space – Cartesian, polar, or whatever – which we define by choosing a representation, or a base. And all the other elements of the set are just some algebraic combination of the base set. Mathematical space involves numbers. They don’t – let me emphasize that: they do not!– involve the physical dimensions of the variables. Always remember: math shows us the relations, but it doesn’t show us the stuff itself. Think of it: even if we may refer to the coordinate axes as time, or distance, we do not really think of them as something physical. In math, the physical dimension is just a label. Nothing more. Nothing less.

In contrast, physical spacetime is filled with something – with waves, or with particles – so it’s spacetime filled with energy and/or matter. In fact, we should analyze matter and energy as essentially the same thing, and please do carefully re-read what I wrote: I said they are essentially the same. I did not say they are the same. Energy and mass are equivalent, but not quite the same. I’ll tell you what that means in a moment.

These waves, or particles, come with mass, energy and momentum. There is an equivalence between mass and energy, but they are not the same. There is a twist – literally (only after reading the next paragraphs, you’ll realize how literally): even when choosing our time and distance units such that is numerically equal to 1 – e.g. when measuring distance in light-seconds (or time in light-meters), or when using Planck units – the physical dimension of the cfactor in Einstein’s E = mcequation doesn’t vanish: the physical dimension of energy is kg·m2/s2.

Using Newton’s force law (1 N = 1 kg·m/s2), we can easily see this rather strange unit is effectively equivalent to the energy unit, i.e. the joule (1 J = 1 kg·m2/s2 = 1 (N·s2/m)·m2/s= 1 N·m), but that’s not the point. The (m/s)2 factor – i.e. the square of the velocity dimension – reflects the following:

  1. Energy is nothing but mass in motion. To be precise, it’s oscillating mass. [And, yes, that’s what string theory is all about, but I didn’t want to mention that. It’s just terminology once again: I prefer to say ‘oscillating’ rather than ‘vibrating’. :-)]
  2. The rapidly oscillating real and imaginary component of the matter-wave (or wavefunction, we should say) each capture half of the total energy of the object E = mc2.
  3. The oscillation is an oscillation of the mass of the particle (or wave) that we’re looking at.

In the mentioned publication, I explore the structural similarity between:

  1. The oscillating electric and magnetic field vectors (E and B) that represent the electromagnetic wave, and
  2. The oscillating real and imaginary part of the matter-wave.

The story is simple or complicated, depending on what you know already, but it can be told in an abnoxiously easy way. Note that the associated force laws do not differ in their structure:

Coulomb Law

gravitation law

The only difference is the dimension of m versus q: mass – the measure of inertia -versus charge. Mass comes in one color only, so to speak: it’s always positive. In contrast, electric charge comes in two colors: positive and negative. You can guess what comes next, but I won’t talk about that here.:-) Just note the absolute distance between two charges (with the same or the opposite sign) is twice the distance between 0 and 1, which must explains the rather mysterious 2 factor I get for the Schrödinger equation for the electromagnetic wave (but I still need to show how that works out exactly).

The point is: remembering that the physical dimension of the electric field is N/C (newton per coulomb, i.e. force per unit of charge) it should not come as a surprise that we find that the physical dimension of the components of the matter-wave is N/kg: newton per kg, i.e. force per unit of mass. For the detail, I’ll refer you to that article of mine (and, because I know you will not want to work your way through it, let me tell you it’s the last chapter that tells you how to do the trick).

So where were we? Strange. I actually just wanted to talk about discrete spacetime here, but I realize I’ve already dealt with all of the metaphysical questions you could possible have, except the (existential) Who Am I? question, which I cannot answer on your behalf. 🙂

I wanted to talk about physical spacetime, so that’s sanitized mathematical space plus something. A date without logistics. Our mind is a lazy host, indeed.

Reality is the guest that brings all of the wine and the food to the party.

In fact, it’s a guest that brings everything to the party: you – the observer – just need to set the time and the place. In fact, in light of what Kant – and many other eminent philosophers – wrote about space and time being constructs of the mind, that’s another statement which you should interpret literally. So physical spacetime is spacetime filled with something – like a wave, or a field. So how does that look like? Well… Frankly, I don’t know! But let me share my idea of it.

Because of the unity of Planck’s quantum of action (ħ ≈ 1.0545718×10−34 N·m·s), a wave traveling in spacetime might be represented as a set of discrete spacetime points and the associated amplitudes, as illustrated below. [I just made an easy Excel graph. Nothing fancy.]

spacetime

The space in-between the discrete spacetime points, which are separated by the Planck time and distance units, is not real. It is plain nothingness, or – if you prefer that term – the space in-between in is mathematical space only: a figment of the mind – nothing real, because quantum theory tells us that the real, physical, space is discontinuous.

Why is that so? Well… Smaller time and distance units cannot exist, because we would not be able to pack Planck’s quantum of action in them: a box of the Planck scale, with ħ in it, is just a black hole and, hence, nothing could go from here to there, because all would be trapped. Of course, now you’ll wonder what it means to ‘pack‘ Planck’s quantum of action in a Planck-scale spacetime box. Let me try  to explain this. It’s going to be a rather rudimentary explanation and, hence, it may not satisfy you. But then the alternative is to learn more about black holes and the Schwarzschild radius, which I warmly recommend for two equivalent reasons:

  1. The matter is actually quite deep, and I’d recommend you try to fully understand it by reading some decent physics course.
  2. You’d stop reading this nonsense.

If, despite my warning, you would continue to read what I write, you may want to note that we could also use the logic below to define Planck’s quantum of action, rather than using it to define the Planck time and distance unit. Everything is related to everything in physics. But let me now give the rather naive explanation itself:

  • Planck’s quantum of action (ħ ≈ 1.0545718×10−34 N·m·s) is the smallest thing possible. It may express itself as some momentum (whose physical dimension is N·s) over some distance (Δs), or as some amount of energy (whose dimension is N·m) over some time (Δt).
  • Now, energy is an oscillation of mass (I will repeat that a couple of times, and show you the detail of what that means in the last chapter) and, hence, ħ must necessarily express itself both as momentum as well as energy over some time and some distance. Hence, it is what it is: some force over some distance over some time. This reflects the physical dimension of ħ, which is the product of force, distance and time. So let’s assume some force ΔF, some distance Δs, and some time Δt, so we can write ħ as ħ = ΔF·Δs·Δt.
  • Now let’s pack that into a traveling particle – like a photon, for example – which, as you know (and as I will show in this publication) is, effectively, just some oscillation of mass, or an energy flow. Now let’s think about one cycle of that oscillation. How small can we make it? In spacetime, I mean.
  • If we decrease Δs and/or Δt, then ΔF must increase, so as to ensure the integrity (or unity) of ħ as the fundamental quantum of action. Note that the increase in the momentum (ΔF·Δt) and the energy (ΔF·Δs) is proportional to the decrease in Δt and Δs. Now, in our search for the Planck-size spacetime box, we will obviously want to decrease Δs and Δt simultaneously.
  • Because nothing can exceed the speed of light, we may want to use equivalent time and distance units, so the numerical value of the speed of light is equal to 1 and all velocities become relative velocities. If we now assume our particle is traveling at the speed of light – so it must be a photon, or a (theoretical) matter-particle with zero rest mass (which is something different than a photon) – then our Δs and Δt should respect the following condition: Δs/Δt = c = 1.
  • Now, when Δs = 1.6162×10−35 m and Δt = 5.391×10−44 s, we find that Δs/Δt = c, but ΔF = ħ/(Δs·Δt) = (1.0545718×10−34 N·m·s)/[(1.6162×10−35 m)·(5.391×10−44 s)] ≈ 1.21×1044 N. That force is monstrously huge. Think of it: because of gravitation, a mass of 1 kg in our hand, here on Earth, will exert a force of 9.8 N. Now note the exponent in that 1.21×1044 number.
  • If we multiply that monstrous force with Δs – which is extremely tiny – we get the Planck energy: (1.6162×10−35 m)·(1.21×1044 N) ≈ 1.956×109 joule. Despite the tininess of Δs, we still get a fairly big value for the Planck energy. Just to give you an idea, it’s the energy that you’d get out of burning 60 liters of gasoline—or the mileage you’d get out of 16 gallons of fuel! In fact, the equivalent mass of that energy, packed in such tiny space, makes it a black hole.
  • In short, the conclusion is that our particle can’t move (or, thinking of it as a wave, that our wave can’t wave) because it’s caught in the black hole it creates by its own energy: so the energy can’t escape and, hence, it can’t flow. 🙂

Of course, you will now say that we could imagine half a cycle, or a quarter of that cycle. And you are right: we can surely imagine that, but we get the same thing: to respect the unity of ħ, we’ll then have to pack it into half a cycle, or a quarter of a cycle, which just means the energy of the whole cycle is 2·ħ, or 4·ħ. However, our conclusion still stands: we won’t be able to pack that half-cycle, or that quarter-cycle, into something smaller than the Planck-size spacetime box, because it would make it a black hole, and so our wave wouldn’t go anywhere, and the idea of our wave itself – or the particle – just doesn’t make sense anymore.

This brings me to the final point I’d like to make here. When Maxwell or Einstein, or the quantum vacuumists – or I 🙂 – say that the speed of light is just a property of the vacuum, then that’s correct and not correct at the same time. First, we should note that, if we say that, we might also say that ħ is a property of the vacuum. All physical constants are. Hence, it’s a pretty meaningless statement. Still, it’s a statement that helps us to understand the essence of reality. Second, and more importantly, we should dissect that statement. The speed of light combines two very different aspects:

  1. It’s a physical constant, i.e. some fixed number that we will find to be the same regardless of our reference frame. As such, it’s as essential as those immovable physical laws that we find to be the same in each and every reference frame.
  2. However, its physical dimension is the ratio of the distance and the time unit: m/s. We may choose other time and distance units, but we will still combine them in that ratio. These two units represent the two dimensions in our mind that – as Kant noted – structure our perception of reality: the temporal and spatial dimension.

Hence, we cannot just say that is ‘just a property of the vacuum’. In our definition of as a velocity, we mix reality – the ‘outside world’ – with our perception of it. It’s unavoidable. Frankly, while we should obviously try – and we should try very hard! – to separate what’s ‘out there’ versus ‘how we make sense of it’, it is and remains an impossible job because… Well… When everything is said and done, what we observe ‘out there’ is just that: it’s just what we – humans – observe. 🙂

So, when everything is said and done, the essence of reality consists of four things:

  1. Nothing
  2. Mass, i.e. something, or not nothing
  3. Movement (of something), from nowhere to somewhere.
  4. Us: our mind. Or God’s Mind. Whatever. Mind.

The first is like yin and yang, or manicheism, or whatever dualistic religious system. As for Movement and Mind… Hmm… In some very weird way, I feel they must be part of one and the same thing as well. 🙂 In fact, we may also think of those four things as:

  1. 0 (zero)
  2. 1 (one), or as some sine or a cosine, which is anything in-between 0 and 1.
  3. Well… I am not sure! I can’t really separate point 3 and point 4, because they combine point 1 and point 2.

So we’ve don’t have a quadrupality, right? We do have Trinity here, don’t we? […] Maybe. I won’t comment, because I think I just found Unity here. 🙂