The quantum of time and distance

Post scriptum note added on 11 July 2016: This is one of the more speculative posts which led to my e-publication analyzing the wavefunction as an energy propagation. With the benefit of hindsight, I would recommend you to immediately the more recent exposé on the matter that is being presented here, which you can find by clicking on the provided link. In fact, I actually made some (small) mistakes when writing the post below.

Original post:

In my previous post, I introduced the elementary wavefunction of a particle with zero rest mass in free space (i.e. the particle also has zero potential). I wrote that wavefunction as ei(kx − ωt) ei(x/2 − t/2) = cos[(x−t)/2] + i∙sin[(x−t)/2], and we can represent that function as follows:

5d_euler_f

If the real and imaginary axis in the image above are the y- and z-axis respectively, then the x-axis here is time, so here we’d be looking at the shape of the wavefunction at some fixed point in space.

Now, we could also look at its shape at some fixed in point in time, so the x-axis would then represent the spatial dimension. Better still, we could animate the illustration to incorporate both the temporal as well as the spatial dimension. The following animation does the trick quite well:

Animation

Please do note that space is one-dimensional here: the y- and z-axis represent the real and imaginary part of the wavefunction, not the y- or z-dimension in space.

You’ve seen this animation before, of course: I took it from Wikipedia, and it actually represents the electric field vector (E) for a circularly polarized electromagnetic wave. To get a complete picture of the electromagnetic wave, we should add the magnetic field vector (B), which is not shown here. We’ll come back to that later. Let’s first look at our zero-mass particle denuded of all properties, so that’s not an electromagnetic wave—read: a photon. No. We don’t want to talk charges here.

OK. So far so good. A zero-mass particle in free space. So we got that ei(x/2 − t/2) = cos[(x−t)/2] + i∙sin[(x−t)/2] wavefunction. We got that function assuming the following:

  1. Time and distance are measured in equivalent units, so = 1. Hence, the classical velocity (v) of our zero-mass particle is equal to 1, and we also find that the energy (E), mass (m) and momentum (p) of our particle are numerically the same. We wrote: E = m = p, using the p = m·v (for = c) and the E = m∙c2 formulas.
  2. We also assumed that the quantum of energy (and, hence, the quantum of mass, and the quantum of momentum) was equal to ħ/2, rather than ħ. The de Broglie relations (k = p/ħ and ω = E/ħ) then gave us the rather particular argument of our wavefunction: kx − ωt = x/2 − t/2.

The latter hypothesis (E = m = p = ħ/2) is somewhat strange at first but, as I showed in that post of mine, it avoids an apparent contradiction: if we’d use ħ, then we would find two different values for the phase and group velocity of our wavefunction. To be precise, we’d find for the group velocity, but v/2 for the phase velocity. Using ħ/2 solves that problem. In addition, using ħ/2 is consistent with the Uncertainty Principle, which tells us that ΔxΔp = ΔEΔt = ħ/2.

OK. Take a deep breath. Here I need to say something about dimensions. If we’re saying that we’re measuring time and distance in equivalent units – say, in meter, or in seconds – then we are not saying that they’re the same. The dimension of time and space is fundamentally different, as evidenced by the fact that, for example, time flows in one direction only, as opposed to x. To be precise, we assumed that x and t become countable variables themselves at some point in time. However, if we’re at t = 0, then we’d count time as t = 1, 2, etcetera only. In contrast, at the point x = 0, we can go to x = +1, +2, etcetera but we may also go to x = −1, −2, etc.

I have to stress this point, because what follows will require some mental flexibility. In fact, we often talk about natural units, such as Planck units, which we get from equating fundamental constants, such as c, or ħ, to 1, but then we often struggle to interpret those units, because we fail to grasp what it means to write = 1, or ħ = 1. For example, writing = 1 implies we can measure distance in seconds, or time in meter, but it does not imply that distance becomes time, or vice versa. We still need to keep track of whether or not we’re talking a second in time, or a second in space, i.e. c meter, or, conversely, whether we’re talking a meter in space, or a meter in time, i.e. 1/c seconds. We can make the distinction in various ways. For example, we could mention the dimension of each equation between brackets, so we’d write: t = 1×10−15 s [t] ≈ 299.8×10−9 m [t]. Alternatively, we could put a little subscript (like t, or d), so as to make sure it’s clear our meter is a a ‘light-meter’, so we’d write: t = 1×10−15 s ≈ 299.8×10−9 mt. Likewise, we could add a little subscript when measuring distance in light-seconds, so we’d write x = 3×10m ≈ 1 sd, rather than x = 3×10m [x] ≈ 1 s [x].

If you wish, we could refer to the ‘light-meter’ as a ‘time-meter’ (or a meter of time), and to the light-second as a ‘distance-second’ (or a second of distance). It doesn’t matter what you call it, or how you denote it. In fact, you will never hear of a meter of time, nor will you ever see those subscripts or brackets. But that’s because physicists always keep track of the dimensions of an equation, and so they know. They know, for example, that the dimension of energy combines the dimensions of both force as well as distance, so we write: [energy] = [force]·[distance]. Read: energy amounts to applying a force over a distance. Likewise, momentum amounts to applying some force over some time, so we write: [momentum] = [force]·[time]. Using the usual symbols for energy, momentum, force, distance and time respectively, we can write this as [E] = [F]·[x] and [p] = [F]·[t]. Using the units you know, i.e. joulenewton, meter and seconds, we can also write this as: 1 J = 1 N·m and 1…

Hey! Wait a minute! What’s that N·s unit for momentum? Momentum is mass times velocity, isn’t it? It is. But it amounts to the same. Remember that mass is a measure for the inertia of an object, and so mass is measured with reference to some force (F) and some acceleration (a): F = m·⇔ m = F/a. Hence, [m] = kg = [F/a] = N/(m/s2) = N·s2/m. [Note that the m in the brackets is symbol for mass but the other m is a meter!] So the unit of momentum is (N·s2/m)·(m/s) = N·s = newton·second.

Now, the dimension of Planck’s constant is the dimension of action, which combines all dimensions: force, time and distance. We write: ħ ≈ 1.0545718×10−34 N·m·s (newton·meter·second). That’s great, and I’ll show why in a moment. But, at this point, you should just note that when we write that E = m = p = ħ/2, we’re just saying they are numerically the same. The dimensions of E, m and p are not the same. So what we’re really saying is the following:

  1. The quantum of energy is ħ/2 newton·meter ≈ 0.527286×10−34 N·m.
  2. The quantum of momentum is ħ/2 newton·second ≈ 0.527286×10−34 N·s.

What’s the quantum of mass? That’s where the equivalent units come in. We wrote: 1 kg = 1 N·s2/m. So we could substitute the distance unit in this equation (m) by sd/= sd/(3×108). So we get: 1 kg = 3×108 N·s2/sd. Can we scrap both ‘seconds’ and say that the quantum of mass (ħ/2) is equal to the quantum of momentum? Think about it.

[…]

The answer is… Yes and no—but much more no than yes! The two sides of the equation are only numerically equal, but we’re talking a different dimension here. If we’d write that 1 kg = 0.527286×10−34 N·s2/sd = 0.527286×10−34 N·s, you’d be equating two dimensions that are fundamentally different: space versus time. To reinforce the point, think of it the other way: think of substituting the second (s) for 3×10m. Again, you’d make a mistake. You’d have to write 0.527286×10−34 N·(mt)2/m, and you should not assume that a time-meter is equal to a distance-meter. They’re equivalent units, and so you can use them to get some number right, but they’re not equal: what they measure, is fundamentally different. A time-meter measures time, while a distance-meter measure distance. It’s as simple as that. So what is it then? Well… What we can do is remember Einstein’s energy-mass equivalence relation once more: E = m·c2 (and m is the mass here). Just check the dimensions once more: [m]·[c2] = (N·s2/m)·(m2/s2) = N·m. So we should think of the quantum of mass as the quantum of energy, as energy and mass are equivalent, really.

Back to the wavefunction

The beauty of the construct of the wavefunction resides in several mathematical properties of this construct. The first is its argument:

θ = kx − ωt, with k = p/ħ and ω = E/ħ

Its dimension is the dimension of an angle: we express in it in radians. What’s a radian? You might think that a radian is a distance unit because… Well… Look at how we measure an angle in radians below:

Circle_radians

But you’re wrong. An angle’s measurement in radians is numerically equal to the length of the corresponding arc of the unit circle but… Well… Numerically only. 🙂 Just do a dimensional analysis of θ = kx − ωt = (p/ħ)·x − (E/ħ)·t. The dimension of p/ħ is (N·s)/(N·m·s) = 1/m = m−1, so we get some quantity expressed per meter, which we then multiply by x, so we get a pure number. No dimension whatsoever! Likewise, the dimension of E/ħ is (N·m)/(N·m·s) = 1/s = s−1, which we then multiply by t, so we get another pure number, which we then add to get our argument θ. Hence, Planck’s quantum of action (ħ) does two things for us:

  1. It expresses p and E in units of ħ.
  2. It sorts out the dimensions, ensuring our argument is a dimensionless number indeed.

In fact, I’d say the ħ in the (p/ħ)·x term in the argument is a different ħ than the ħ in the (E/ħ)·t term. Huh? What? Yes. Think of the distinction I made between s and sd, or between m and mt. Both were numerically the same: they captured a magnitude, but they measured different things. We’ve got the same thing here:

  1. The meter (m) in ħ ≈ 1.0545718×10−34 N·m·s in (p/ħ)·x is the dimension of x, and so it gets rid of the distance dimension. So the m in ħ ≈ 1.0545718×10−34 m·s goes, and what’s left measures p in terms of units equal to 1.0545718×10−34 N·s, so we get a pure number indeed.
  2. Likewise, the second (s) in ħ ≈ 1.0545718×10−34 N·m·s in (E/ħ)·t is the dimension of t, and so it gets rid of the time dimension. So the s in ħ ≈ 1.0545718×10−34 N·m·s goes, and what’s left measures E in terms of units equal to 1.0545718×10−34 N·m, so we get another pure number.
  3. Adding both gives us the argument θ: a pure number that measures some angle.

That’s why you need to watch out when writing θ = (p/ħ)·x − (E/ħ)·t as θ = (p·x − E·t)/ħ or – in the case of our elementary wavefunction for the zero-mass particle – as θ = (x/2 − t/2) = (x − t)/2. You can do it – in fact, you should do when trying to calculate something – but you need to be aware that you’re making abstraction of the dimensions. That’s quite OK, as you’re just calculating something—but don’t forget the physics behind!

You’ll immediately ask: what are the physics behind here? Well… I don’t know. Perhaps nobody knows. As Feynman once famously said: “I think I can safely say that nobody understands quantum mechanics.” But then he never wrote that, and I am sure he didn’t really mean that. And then he said that back in 1964, which is 50 years ago now. 🙂 So let’s try to understand it at least. 🙂

Planck’s quantum of action – 1.0545718×10−34 N·m·s – comes to us as a mysterious quantity. A quantity is more than a a number. A number is something like π or e, for example. It might be a complex number, like eiθ, but that’s still a number. In contrast, a quantity has some dimension, or some combination of dimensions. A quantity may be a scalar quantity (like distance), or a vector quantity (like a field vector). In this particular case (Planck’s ħ or h), we’ve got a physical constant combining three dimensions: force, time and distance—or space, if you want.  It’s a quantum, so it comes as a blob—or a lump, if you prefer that word. However, as I see it, we can sort of project it in space as well as in time. In fact, if this blob is going to move in spacetime, then it will move in space as well as in time: t will go from 0 to 1, and x goes from 0 to ± 1, depending on what direction we’re going. So when I write that E = p = ħ/2—which, let me remind you, are two numerical equations, really—I sort of split Planck’s quantum over E = m and p respectively.

You’ll say: what kind of projection or split is that? When projecting some vector, we’ll usually have some sine and cosine, or a 1/√2 factor—or whatever, but not a clean 1/2 factor. Well… I have no answer to that, except that this split fits our mathematical construct. Or… Well… I should say: my mathematical construct. Because what I want to find is this clean Schrödinger equation:

∂ψ/∂t = i·(ħ/2m)·∇2ψ = i·∇2ψ for m = ħ/2

Now I can only get this equation if (1) E = m = p and (2) if m = ħ/2 (which amounts to writing that E = p = m = ħ/2). There’s also the Uncertainty Principle. If we are going to consider the quantum vacuum, i.e. if we’re going to look at space (or distance) and time as count variables, then Δx and Δt in the ΔxΔp = ΔEΔt = ħ/2 equations are ± 1 and, therefore, Δp and ΔE must be ± ħ/2. In any case, I am not going to try to justify my particular projection here. Let’s see what comes out of it.

The quantum vacuum

Schrödinger’s equation for my zero-mass particle (with energy E = m = p = ħ/2) amounts to writing:

  1. Re(∂ψ/∂t) = −Im(∇2ψ)
  2. Im(∂ψ/∂t) = Re(∇2ψ)

Now that reminds of the propagation mechanism for the electromagnetic wave, which we wrote as ∂B/∂t = –∇×and E/∂t = ∇×B, also assuming we measure time and distance in equivalent units. However, we’ll come back to that later. Let’s first study the equation we have, i.e.

ei(kx − ωt) = ei(ħ·x/2 − ħ·t/2)/ħ = ei(x/2 − t/2) = cos[(x−t)/2] + i∙sin[(x−t)/2]

Let’s think some more. What is that ei(x/2 − t/2) function? It’s subject to conceiving time and distance as countable variables, right? I am tempted to say: as discrete variables, but I won’t go that far—not now—because the countability may be related to a particular interpretation of quantum physics. So I need to think about that. In any case… The point is that x can only take on values like 0, 1, 2, etcetera. And the same goes for t. To make things easy, we’ll not consider negative values for x right now (and, obviously, not for t either). But you can easily check it doesn’t make a difference: if you think of the propagation mechanism – which is what we’re trying to model here – then x is always positive, because we’re moving away from some source that caused the wave. In any case, we’ve got a infinite set of points like:

  • ei(0/2 − 0/2) ei(0) = cos(0) + i∙sin(0)
  • ei(1/2 − 0/2) = ei(1/2) = cos(1/2) + i∙sin(1/2)
  • ei(0/2 − 1/2) = ei(−1/2) = cos(−1/2) + i∙sin(−1/2)
  • ei(1/2 − 1/2) = ei(0) = cos(0) + i∙sin(0)

In my previous post, I calculated the real and imaginary part of this wavefunction for x going from 0 to 14 (as mentioned, in steps of 1) and for t doing the same (also in steps of 1), and what we got looked pretty good:

graph real graph imaginary

I also said that, if you wonder how the quantum vacuum could possibly look like, you should probably think of these discrete spacetime points, and some complex-valued wave that travels as illustrated above. In case you wonder what’s being illustrated here: the right-hand graph is the cosine value for all possible x = 0, 1, 2,… and t = 0, 1, 2,… combinations, and the left-hand graph depicts the sine values, so that’s the imaginary part of our wavefunction. Taking the absolute square of both gives 1 for all combinations. So it’s obvious we’d need to normalize and, more importantly, we’d have to localize the particle by adding several of these waves with the appropriate contributions. But so that’s not our worry right now. I want to check whether those discrete time and distance units actually make sense. What’s their size? Is it anything like the Planck length (for distance) and/or the Planck time?

Let’s see. What are the implications of our model? The question here is: if ħ/2 is the quantum of energy, and the quantum of momentum, what’s the quantum of force, and the quantum of time and/or distance?

Huh? Yep. We treated distance and time as countable variables above, but now we’d like to express the difference between x = 0 and x = 1 and between t = 0 and t = 1 in the units we know, this is in meter and in seconds. So how do we go about that? Do we have enough equations here? Not sure. Let’s see…

We obviously need to keep track of the various dimensions here, so let’s refer to that discrete distance and time unit as tand lP respectively. The subscript (P) refers to Planck, and the refers to a length, but we’re likely to find something else than Planck units. I just need placeholder symbols here. To be clear: tand lP are expressed in meter and seconds respectively, just like the actual Planck time and distance, which are equal to 5.391×10−44 s (more or less) and  1.6162×10−35 m (more or less) respectively. As I mentioned above, we get these Planck units by equating fundamental physical constants to 1. Just check it: (1.6162×10−35 m)/(5.391×10−44 s) = ≈ 3×10m/s. So the following relation must be true: lP = c·tP, or lP/t= c.

Now, as mentioned above, there must be some quantum of force as well, which we’ll write as FP, and which is – obviously – expressed in newton (N). So we have:

  1. E = ħ/2 ⇒ 0.527286×10−34 N·m = FP·lN·m
  2. p = ħ/2 ⇒ 0.527286×10−34 N·s = FP·tN·s

Let’s try to divide both formulas: E/p = (FP·lN·m)/(FP·tN·s) = lP/tP m/s = lP/tP m/s = c m/s. That’s consistent with the E/p = equation. Hmm… We found what we knew already. My model is not fully determined, it seems. 😦

What about the following simplistic approach? E is numerically equal to 0.527286×10−34, and its dimension is [E] = [F]·[x], so we write: E = 0.527286×10−34·[E] = 0.527286×10−34·[F]·[x]. Hence, [x] = [E]/[F] = (N·m)/N = m. That just confirms what we already know: the quantum of distance (i.e. our fundamental unit of distance) can be expressed in meter. But our model does not give that fundamental unit. It only gives us its dimension (meter), which is stuff we knew from the start. 😦

Let’s try something else. Let’s just accept that Planck length and time, so we write:

  • lP = 1.6162×10−35 m
  • t= 5.391×10−44 s

Now, if the quantum of action is equal to ħ N·m·s = FP·lP·tP N·m·s = 1.0545718×10−34 N·m·s, and if the two definitions of land tP above hold, then 1.0545718×10−34 N·m·s = (FN)×(1.6162×10−35 m)×(5.391×10−44 s) ≈ FP  8.713×10−79 N·m·s ⇔ FP ≈ 1.21×1044 N.

Does that make sense? It does according to Wikipedia, but how do we relate this to our E = p = m = ħ/2 equations? Let’s try this:

  1. EP = (1.0545718×10−34 N·m·s)/(5.391×10−44 s) = 1.956×109 J. That corresponds to the regular Planck energy.
  2. pP = (1.0545718×10−34 N·m·s)/(1.6162×10−35 m) = 0.6525 N·s. That corresponds to the regular Planck momentum.

Is EP = pP? Let’s substitute: 1.956×109 N·m = 1.956×109 N·(s/c) = 1.956×109/2.998×10N·s = 0.6525 N·s. So, yes, it comes out alright. In fact, I omitted the 1/2 factor in the calculations, but it doesn’t matter: it does come out alright. So I did not prove that the difference between my x = 0 and x = 1 points (or my t = 0 and t  = 1 points) is equal to the Planck length (or the Planck time unit), but I did show my theory is, at the very least, compatible with those units. That’s more than enough for now. And I’ll come surely come back to it in my next post. 🙂

Post Scriptum: One must solve the following equations to get the fundamental Planck units:

Planck units

We have five fundamental equations for five fundamental quantities respectively: tP, lP, FP, mP, and EP respectively, so that’s OK: it’s a fully determined system alright! But where do the expressions with G, kB (the Boltzmann constant) and ε0 come from? What does it mean to equate those constants to 1? Well… I need to think about that, and I’ll get back to you on it. 🙂

Re-visiting uncertainty…

I re-visited the Uncertainty Principle a couple of times already, but here I really want to get at the bottom of the thing? What’s uncertain? The energy? The time? The wavefunction itself? These questions are not easily answered, and I need to warn you: you won’t get too much wiser when you’re finished reading this. I just felt like freewheeling a bit. [Note that the first part of this post repeats what you’ll find on the Occam page, or my post on Occam’s Razor. But these post do not analyze uncertainty, which is what I will be trying to do here.]

Let’s first think about the wavefunction itself. It’s tempting to think it actually is the particle, somehow. But it isn’t. So what is it then? Well… Nobody knows. In my previous post, I said I like to think it travels with the particle, but then doesn’t make much sense either. It’s like a fundamental property of the particle. Like the color of an apple. But where is that color? In the apple, in the light it reflects, in the retina of our eye, or is it in our brain? If you know a thing or two about how perception actually works, you’ll tend to agree the quality of color is not in the apple. When everything is said and done, the wavefunction is a mental construct: when learning physics, we start to think of a particle as a wavefunction, but they are two separate things: the particle is reality, the wavefunction is imaginary.

But that’s not what I want to talk about here. It’s about that uncertainty. Where is the uncertainty? You’ll say: you just said it was in our brain. No. I didn’t say that. It’s not that simple. Let’s look at the basic assumptions of quantum physics:

  1. Quantum physics assumes there’s always some randomness in Nature and, hence, we can measure probabilities only. We’ve got randomness in classical mechanics too, but this is different. This is an assumption about how Nature works: we don’t really know what’s happening. We don’t know the internal wheels and gears, so to speak, or the ‘hidden variables’, as one interpretation of quantum mechanics would say. In fact, the most commonly accepted interpretation of quantum mechanics says there are no ‘hidden variables’.
  2. However, as Shakespeare has one of his characters say: there is a method in the madness, and the pioneers– I mean Werner Heisenberg, Louis de Broglie, Niels Bohr, Paul Dirac, etcetera – discovered that method: all probabilities can be found by taking the square of the absolute value of a complex-valued wavefunction (often denoted by Ψ), whose argument, or phase (θ), is given by the de Broglie relations ω = E/ħ and k = p/ħ. The generic functional form of that wavefunction is:

Ψ = Ψ(x, t) = a·eiθ = a·ei(ω·t − k ∙x) = a·ei·[(E/ħ)·t − (p/ħ)∙x]

That should be obvious by now, as I’ve written more than a dozens of posts on this. 🙂 I still have trouble interpreting this, however—and I am not ashamed, because the Great Ones I just mentioned have trouble with that too. It’s not that complex exponential. That eiφ is a very simple periodic function, consisting of two sine waves rather than just one, as illustrated below. [It’s a sine and a cosine, but they’re the same function: there’s just a phase difference of 90 degrees.] sine

No. To understand the wavefunction, we need to understand those de Broglie relations, ω = E/ħ and k = p/ħ, and then, as mentioned, we need to understand the Uncertainty Principle. We need to understand where it comes from. Let’s try to go as far as we can by making a few remarks:

  • Adding or subtracting two terms in math, (E/ħ)·t − (p/ħ)∙x, implies the two terms should have the same dimension: we can only add apples to apples, and oranges to oranges. We shouldn’t mix them. Now, the (E/ħ)·t and (p/ħ)·x terms are actually dimensionless: they are pure numbers. So that’s even better. Just check it: energy is expressed in newton·meter (energy, or work, is force over distance, remember?) or electronvolts (1 eV = 1.6×10−19 J = 1.6×10−19 N·m); Planck’s constant, as the quantum of action, is expressed in J·s or eV·s; and the unit of (linear) momentum is 1 N·s = 1 kg·m/s = 1 N·s. E/ħ gives a number expressed per second, and p/ħ a number expressed per meter. Therefore, multiplying E/ħ and p/ħ by t and x respectively gives us a dimensionless number indeed.
  • It’s also an invariant number, which means we’ll always get the same value for it, regardless of our frame of reference. As mentioned above, that’s because the four-vector product pμxμ = E·t − px is invariant: it doesn’t change when analyzing a phenomenon in one reference frame (e.g. our inertial reference frame) or another (i.e. in a moving frame).
  • Now, Planck’s quantum of action h, or ħ – h and ħ only differ in their dimension: h is measured in cycles per second, while ħ is measured in radians per second: both assume we can at least measure one cycle – is the quantum of energy really. Indeed, if “energy is the currency of the Universe”, and it’s real and/or virtual photons who are exchanging it, then it’s good to know the currency unit is h, i.e. the energy that’s associated with one cycle of a photon. [In case you want to see the logic of this, see my post on the physical constants c, h and α.]
  • It’s not only time and space that are related, as evidenced by the fact that t − x itself is an invariant four-vector, E and p are related too, of course! They are related through the classical velocity of the particle that we’re looking at: E/p = c2/v and, therefore, we can write: E·β = p·c, with β = v/c, i.e. the relative velocity of our particle, as measured as a ratio of the speed of light. Now, I should add that the t − x four-vector is invariant only if we measure time and space in equivalent units. Otherwise, we have to write c·t − x. If we do that, so our unit of distance becomes meter, rather than one meter, or our unit of time becomes the time that is needed for light to travel one meter, then = 1, and the E·β = p·c becomes E·β = p, which we also write as β = p/E: the ratio of the energy and the momentum of our particle is its (relative) velocity.

Combining all of the above, we may want to assume that we are measuring energy and momentum in terms of the Planck constant, i.e. the ‘natural’ unit for both. In addition, we may also want to assume that we’re measuring time and distance in equivalent units. Then the equation for the phase of our wavefunctions reduces to:

θ = (ω·t − k ∙x) = E·t − p·x

Now, θ is the argument of a wavefunction, and we can always re-scale such argument by multiplying or dividing it by some constant. It’s just like writing the argument of a wavefunction as v·t–x or (v·t–x)/v = t –x/v  with the velocity of the waveform that we happen to be looking at. [In case you have trouble following this argument, please check the post I did for my kids on waves and wavefunctions.] Now, the energy conservation principle tells us the energy of a free particle won’t change. [Just to remind you, a ‘free particle’ means it’s in a ‘field-free’ space, so our particle is in a region of uniform potential.] So we can, in this case, treat E as a constant, and divide E·t − p·x by E, so we get a re-scaled phase for our wavefunction, which I’ll write as:

φ = (E·t − p·x)/E = t − (p/E)·x = t − β·x

Alternatively, we could also look at p as some constant, as there is no variation in potential energy that will cause a change in momentum, and the related kinetic energy. We’d then divide by p and we’d get (E·t − p·x)/p = (E/p)·t − x) = t/β − x, which amounts to the same, as we can always re-scale by multiplying it with β, which would again yield the same t − β·x argument.

The point is, if we measure energy and momentum in terms of the Planck unit (I mean: in terms of the Planck constant, i.e. the quantum of energy), and if we measure time and distance in ‘natural’ units too, i.e. we take the speed of light to be unity, then our Platonic wavefunction becomes as simple as:

Φ(φ) = a·eiφ = a·ei(t − β·x)

This is a wonderful formula, but let me first answer your most likely question: why would we use a relative velocity?Well… Just think of it: when everything is said and done, the whole theory of relativity and, hence, the whole of physics, is based on one fundamental and experimentally verified fact: the speed of light is absolute. In whatever reference frame, we will always measure it as 299,792,458 m/s. That’s obvious, you’ll say, but it’s actually the weirdest thing ever if you start thinking about it, and it explains why those Lorentz transformations look so damn complicated. In any case, this fact legitimately establishes as some kind of absolute measure against which all speeds can be measured. Therefore, it is only natural indeed to express a velocity as some number between 0 and 1. Now that amounts to expressing it as the β = v/c ratio.

Let’s now go back to that Φ(φ) = a·eiφ = a·ei(t − β·x) wavefunction. Its temporal frequency ω is equal to one, and its spatial frequency k is equal to β = v/c. It couldn’t be simpler but, of course, we’ve got this remarkably simple result because we re-scaled the argument of our wavefunction using the energy and momentum itself as the scale factor. So, yes, we can re-write the wavefunction of our particle in a particular elegant and simple form using the only information that we have when looking at quantum-mechanical stuff: energy and momentum, because that’s what everything reduces to at that level.

So… Well… We’ve pretty much explained what quantum physics is all about here. You just need to get used to that complex exponential: eiφ = cos(−φ) + i·sin(−φ) = cos(φ) −i·sin(φ). It would have been nice if Nature would have given us a simple sine or cosine function. [Remember the sine and cosine function are actually the same, except for a phase difference of 90 degrees: sin(φ) = cos(π/2−φ) = cos(φ+π/2). So we can go always from one to the other by shifting the origin of our axis.] But… Well… As we’ve shown so many times already, a real-valued wavefunction doesn’t explain the interference we observe, be it interference of electrons or whatever other particles or, for that matter, the interference of electromagnetic waves itself, which, as you know, we also need to look at as a stream of photons , i.e. light quanta, rather than as some kind of infinitely flexible aether that’s undulating, like water or air.

However, the analysis above does not include uncertainty. That’s as fundamental to quantum physics as de Broglie‘s equations, so let’s think about that now.

Introducing uncertainty

Our information on the energy and the momentum of our particle will be incomplete: we’ll write E = E± σE, and p = p± σp. Huh? No ΔE or ΔE? Well… It’s the same, really, but I am a bit tired of using the Δ symbol, so I am using the σ symbol here, which denotes a standard deviation of some density function. It underlines the probabilistic, or statistical, nature of our approach.

The simplest model is that of a two-state system, because it involves two energy levels only: E = E± A, with A some constant. Large or small, it doesn’t matter. All is relative anyway. 🙂 We explained the basics of the two-state system using the example of an ammonia molecule, i.e. an NHmolecule, so it consists on one nitrogen and three hydrogen atoms. We had two base states in this system: ‘up’ or ‘down’, which we denoted as base state | 1 〉 and base state | 2 〉 respectively. This ‘up’ and ‘down’ had nothing to do with the classical or quantum-mechanical notion of spin, which is related to the magnetic moment. No. It’s much simpler than that: the nitrogen atom could be either beneath or, else, above the plane of the hydrogens, as shown below, with ‘beneath’ and ‘above’ being defined in regard to the molecule’s direction of rotation around its axis of symmetry.

Capture

In any case, for the details, I’ll refer you to the post(s) on it. Here I just want to mention the result. We wrote the amplitude to find the molecule in either one of these two states as:

  • C= 〈 1 | ψ 〉 = (1/2)·e(i/ħ)·(E− A)·t + (1/2)·e(i/ħ)·(E+ A)·t
  • C= 〈 2 | ψ 〉 = (1/2)·e(i/ħ)·(E− A)·t – (1/2)·e(i/ħ)·(E+ A)·t

That gave us the following probabilities:

graph

If our molecule can be in two states only, and it starts off in one, then the probability that it will remain in that state will gradually decline, while the probability that it flips into the other state will gradually increase.

Now, the point you should note is that we get these time-dependent probabilities only because we’re introducing two different energy levels: E+ A and E− A. [Note they separated by an amount equal to 2·A, as I’ll use that information later.] If we’d have one energy level only – which amounts to saying that we know it, and that it’s something definite then we’d just have one wavefunction, which we’d write as:

a·eiθ = a·e−(i/ħ)·(E0·t − p·x) = a·e−(i/ħ)·(E0·t)·e(i/ħ)·(p·x)

Note that we can always split our wavefunction in a ‘time’ and a ‘space’ part, which is quite convenient. In fact, because our ammonia molecule stays where it is, it has no momentum: p = 0. Therefore, its wavefunction reduces to:

a·eiθ = a·e−(i/ħ)·(E0·t)

As simple as it can be. 🙂 The point is that a wavefunction like this, i.e. a wavefunction that’s defined by a definite energy, will always yield a constant and equal probability, both in time as well as in space. That’s just the math of it: |a·eiθ|= a2. Always! If you want to know why, you should think of Euler’s formula and Pythagoras’ Theorem: cos2θ +sin2θ = 1. Always! 🙂

That constant probability is annoying, because our nitrogen atom never ‘flips’, and we know it actually does, thereby overcoming a energy barrier: it’s a phenomenon that’s referred to as ‘tunneling’, and it’s real! The probabilities in that graph above are real! Also, if our wavefunction would represent some moving particle, it would imply that the probability to find it somewhere in space is the same all over space, which implies our particle is everywhere and nowhere at the same time, really.

So, in quantum physics, this problem is solved by introducing uncertainty. Introducing some uncertainty about the energy, or about the momentum, is mathematically equivalent to saying that we’re actually looking at a composite wave, i.e. the sum of a finite or potentially infinite set of component waves. So we have the same ω = E/ħ and k = p/ħ relations, but we apply them to energy levels, or to some continuous range of energy levels ΔE. It amounts to saying that our wave function doesn’t have a specific frequency: it now has n frequencies, or a range of frequencies Δω = ΔE/ħ. In our two-state system, n = 2, obviously! So we’ve two energy levels only and so our composite wave consists of two component waves only.

We know what that does: it ensures our wavefunction is being ‘contained’ in some ‘envelope’. It becomes a wavetrain, or a kind of beat note, as illustrated below:

File-Wave_group

[The animation comes from Wikipedia, and shows the difference between the group and phase velocity: the green dot shows the group velocity, while the red dot travels at the phase velocity.]

So… OK. That should be clear enough. Let’s now apply these thoughts to our ‘reduced’ wavefunction

Φ(φ) = a·eiφ = a·ei(t − β·x)

Thinking about uncertainty

Frankly, I tried to fool you above. If the functional form of the wavefunction is a·e−(i/ħ)·(E·t − p·x), then we can measure E and p in whatever unit we want, including h or ħ, but we cannot re-scale the argument of the function, i.e. the phase θ, without changing the functional form itself. I explained that in that post for my kids on wavefunctions:, in which I explained we may represent the same electromagnetic wave by two different functional forms:

 F(ct−x) = G(t−x/c)

So F and G represent the same wave, but they are different wavefunctions. In this regard, you should note that the argument of F is expressed in distance units, as we multiply t with the speed of light (so it’s like our time unit is 299,792,458 m now), while the argument of G is expressed in time units, as we divide x by the distance traveled in one second). But F and G are different functional forms. Just do an example and take a simple sine function: you’ll agree that sin(θ) ≠ sin(θ/c) for all values of θ, except 0. Re-scaling changes the frequency, or the wavelength, and it does so quite drastically in this case. 🙂 Likewise, you can see that a·ei(φ/E) = [a·eiφ]1/E, so that’s a very different function. In short, we were a bit too adventurous above. Now, while we can drop the 1/ħ in the a·e−(i/ħ)·(E·t − p·x) function when measuring energy and momentum in units that are numerically equal to ħ, we’ll just revert to our original wavefunction for the time being, which equals

Ψ(θ) = a·eiθ = a·ei·[(E/ħ)·t − (p/ħ)·x]

Let’s now introduce uncertainty once again. The simplest situation is that we have two closely spaced energy levels. In theory, the difference between the two can be as small as ħ, so we’d write: E = E± ħ/2. [Remember what I said about the ± A: it means the difference is 2A.] However, we can generalize this and write: E = E± n·ħ/2, with n = 1, 2, 3,… This does not imply any greater uncertainty – we still have two states only – but just a larger difference between the two energy levels.

Let’s also simplify by looking at the ‘time part’ of our equation only, i.e. a·ei·(E/ħ)·t. It doesn’t mean we don’t care about the ‘space part’: it just means that we’re only looking at how our function varies in time and so we just ‘fix’ or ‘freeze’ x. Now, the uncertainty is in the energy really but, from a mathematical point of view, we’ve got an uncertainty in the argument of our wavefunction, really. This uncertainty in the argument is, obviously, equal to:

(E/ħ)·t = [(E± n·ħ/2)/ħ]·t = (E0/ħ ± n/2)·t = (E0/ħ)·t ± (n/2)·t

So we can write:

a·ei·(E/ħ)·t = a·ei·[(E0/ħ)·t ± (1/2)·t] = a·ei·[(E0/ħ)·t]·ei·[±(n/2)·t]

This is valid for any value of t. What the expression says is that, from a mathematical point of view, introducing uncertainty about the energy is equivalent to introducing uncertainty about the wavefunction itself. It may be equal to a·ei·[(E0/ħ)·t]·ei·(n/2)·t, but it may also be equal to a·ei·[(E0/ħ)·t]·ei·(n/2)·t. The phases of the ei·t/2 and ei·t/2 factors are separated by a distance equal to t.

So… Well…

[…]

Hmm… I am stuck. How is this going to lead me to the ΔE·Δt = ħ/2 principle? To anyone out there: can you help? 🙂

[…]

The thing is: you won’t get the Uncertainty Principle by staring at that formula above. It’s a bit more complicated. The idea is that we have some distribution of the observables, like energy and momentum, and that implies some distribution of the associated frequencies, i.e. ω for E, and k for p. The Wikipedia article on the Uncertainty Principle gives you a formal derivation of the Uncertainty Principle, using the so-called Kennard formulation of it. You can have a look, but it involves a lot of formalism—which is what I wanted to avoid here!

I hope you get the idea though. It’s like statistics. First, we assume we know the population, and then we describe that population using all kinds of summary statistics. But then we reverse the situation: we don’t know the population but we do have sample information, which we also describe using all kinds of summary statistics. Then, based on what we find for the sample, we calculate the estimated statistics for the population itself, like the mean value and the standard deviation, to name the most important ones. So it’s a bit the same here, except that, in quantum mechanics, there may not be any real value underneath: the mean and the standard deviation represent something fuzzy, rather than something precise.

Hmm… I’ll leave you with these thoughts. We’ll develop them further as we will be digging into all much deeper over the coming weeks. 🙂

Post scriptum: I know you expect something more from me, so… Well… Think about the following. If we have some uncertainty about the energy E, we’ll have some uncertainty about the momentum p according to that β = p/E. [By the way, please think about this relationship: it says, all other things being equal (such as the inertia, i.e. the mass, of our particle), that more energy will all go into more momentum. More specifically, note that ∂p/∂p = β according to this equation. In fact, if we include the mass of our particle, i.e. its inertia, as potential energy, then we might say that (1−β)·E is the potential energy of our particle, as opposed to its kinetic energy.] So let’s try to think about that.

Let’s denote the uncertainty about the energy as ΔE. As should be obvious from the discussion above, it can be anything: it can mean two separate energy levels E = E± A, or a potentially infinite set of values. However, even if the set is infinite, we know the various energy levels need to be separated by ħ, at least. So if the set is infinite, it’s going to be a countable infinite set, like the set of natural numbers, or the set of integers. But let’s stick to our example of two values E = E± A only, with A = ħ so E + ΔE = E± ħ and, therefore, ΔE = ± ħ. That implies Δp = Δ(β·E) = β·ΔE = ± β·ħ.

Hmm… This is a bit fishy, isn’t it? We said we’d measure the momentum in units of ħ, but so here we say the uncertainty in the momentum can actually be a fraction of ħ. […] Well… Yes. Now, the momentum is the product of the mass, as measured by the inertia of our particle to accelerations or decelerations, and its velocity. If we assume the inertia of our particle, or its mass, to be constant – so we say it’s a property of the object that is not subject to uncertainty, which, I admit, is a rather dicey assumption (if all other measurable properties of the particle are subject to uncertainty, then why not its mass?) – then we can also write: Δp = Δ(m·v) = Δ(m·β) = m·Δβ. [Note that we’re not only assuming that the mass is not subject to uncertainty, but also that the velocity is non-relativistic. If not, we couldn’t treat the particle’s mass as a constant.] But let’s be specific here: what we’re saying is that, if ΔE = ± ħ, then Δv = Δβ will be equal to Δβ = Δp/m = ± (β/m)·ħ. The point to note is that we’re no longer sure about the velocity of our particle. Its (relative) velocity is now:

β ± Δβ = β ± (β/m)·ħ

But, because velocity is the ratio of distance over time, this introduces an uncertainty about time and distance. Indeed, if its velocity is β ± (β/m)·ħ, then, over some time T, it will travel some distance X = [β ± (β/m)·ħ]·T. Likewise, it we have some distance X, then our particle will need a time equal to T = X/[β ± (β/m)·ħ].

You’ll wonder what I am trying to say because… Well… If we’d just measure X and T precisely, then all the uncertainty is gone and we know if the energy is E+ ħ or E− ħ. Well… Yes and no. The uncertainty is fundamental – at least that’s what’s quantum physicists believe – so our uncertainty about the time and the distance we’re measuring is equally fundamental: we can have either of the two values X = [β ± (β/m)·ħ] T = X/[β ± (β/m)·ħ], whenever or wherever we measure. So we have a ΔX and ΔT that are equal to ± [(β/m)·ħ]·T and X/[± (β/m)·ħ] respectively. We can relate this to ΔE and Δp:

  • ΔX = (1/m)·T·Δp
  • ΔT = X/[(β/m)·ΔE]

You’ll grumble: this still doesn’t give us the Uncertainty Principle in its canonical form. Not at all, really. I know… I need to do some more thinking here. But I feel I am getting somewhere. 🙂 Let me know if you see where, and if you think you can get any further. 🙂

The thing is: you’ll have to read a bit more about Fourier transforms and why and how variables like time and energy, or position and momentum, are so-called conjugate variables. As you can see, energy and time, and position and momentum, are obviously linked through the E·t and p·products in the E0·t − p·x sum. That says a lot, and it helps us to understand, in a more intuitive way, why the ΔE·Δt and Δp·Δx products should obey the relation they are obeying, i.e. the Uncertainty Principle, which we write as ΔE·Δt ≥ ħ/2 and Δp·Δx ≥ ħ/2. But so proving involves more than just staring at that Ψ(θ) = a·eiθ = a·ei·[(E/ħ)·t − (p/ħ)·x] relation.

Having said, it helps to think about how that E·t − p·x sum works. For example, think about two particles, a and b, with different velocity and mass, but with the same momentum, so p= pb ⇔ ma·v= ma·v⇔ ma/v= mb/va. The spatial frequency of the wavefunction  would be the same for both but the temporal frequency would be different, because their energy incorporates the rest mass and, hence, because m≠ mb, we also know that E≠ Eb. So… It all works out but, yes, I admit it’s all very strange, and it takes a long time and a lot of reflection to advance our understanding.

Re-visiting the speed of light, Planck’s constant, and the fine-structure constant

Note: I have published a paper that is very coherent and fully explains what the fine-structure constant actually is. There is nothing magical about it. It’s not some God-given number. It’s a scaling constant – and then some more. But not God-given. Check it out: The Meaning of the Fine-Structure Constant. No ambiguity. No hocus-pocus.

Jean Louis Van Belle, 23 December 2018

Original post:

A brother of mine sent me a link to an article he liked. Now, because we share some interest in physics and math and other stuff, I looked at it and…

Well… I was disappointed. Despite the impressive credentials of its author – a retired physics professor – it was very poorly written. It made me realize how much badly written stuff is around, and I am glad I am no longer wasting my time on it. However, I do owe my brother some explanation of (a) why I think it was bad, and of (b) what, in my humble opinion, he should be wasting his time on. 🙂 So what it is all about?

The article talks about physicists deriving the speed of light from “the electromagnetic properties of the quantum vacuum.” Now, it’s the term ‘quantum‘, in ‘quantum vacuum’, that made me read the article.

Indeed, deriving the theoretical speed of light in empty space from the properties of the classical vacuum – aka empty space – is a piece of cake: it was done by Maxwell himself as he was figuring out his equations back in the 1850s (see my post on Maxwell’s equations and the speed of light). And then he compared it to the measured value, and he saw it was right on the mark. Therefore, saying that the speed of light is a property of the vacuum, or of empty space, is like a tautology: we may just as well put it the other way around, and say that it’s the speed of light that defines the (properties of the) vacuum!

Indeed, as I’ll explain in a moment: the speed of light determines both the electric as well as the magnetic constants μand ε0, which are the (magnetic) permeability and the (electric) permittivity of the vacuum respectively. Both constants depend on the units we are working with (i.e. the units for electric charge, for distance, for time and for force – or for inertia, if you want, because force is defined in terms of overcoming inertia), but so they are just proportionality coefficients in Maxwell’s equations. So once we decide what units to use in Maxwell’s equations, then μand ε0 are just proportionality coefficients which we get from c. So they are not separate constants really – I mean, they are not separate from c – and all of the ‘properties’ of the vacuum, including these constants, are in Maxwell’s equations.

In fact, when Maxwell compared the theoretical value of c with its presumed actual value, he didn’t compare c‘s theoretical value with the speed of light as measured by astronomers (like that 17th century Ole Roemer, to which our professor refers: he had a first go at it by suggesting some specific value for it based on his observations of the timing of the eclipses of one of Jupiter’s moons), but with c‘s value as calculated from the experimental values of μand ε0! So he knew very well what he was looking at. In fact, to drive home the point, it may also be useful to note that the Michelson-Morley experiment – which accurately measured the speed of light – was done some thirty years later. So Maxwell had already left this world by then—very much in peace, because he had solved the mystery all 19th century physicists wanted to solve through his great unification: his set of equations covers it all, indeed: electricity, magnetism, light, and even relativity!

I think the article my brother liked so much does a very lousy job in pointing all of that out, but that’s not why I wouldn’t recommend it. It got my attention because I wondered why one would try to derive the speed of light from the properties of the quantum vacuum. In fact, to be precise, I hoped the article would tell me what the quantum vacuum actually is. Indeed, as far as I know, there’s only one vacuum—one ’empty space’: empty is empty, isn’t it? 🙂 So I wondered: do we have a ‘quantum’ vacuum? And, if so, what is it, really?

Now, that is where the article is really disappointing, I think. The professor drops a few names (like the Max Planck Institute, the University of Paris-Sud, etcetera), and then, promisingly, mentions ‘fleeting excitations of the quantum vacuum’ and ‘virtual pairs of particles’, but then he basically stops talking about quantum physics. Instead, he wanders off to share some philosophical thoughts on the fundamental physical constants. What makes it all worse is that even those thoughts on the ‘essential’ constants are quite off the mark.

So… This post is just a ‘quick and dirty’ thing for my brother which, I hope, will be somewhat more thought-provoking than that article. More importantly, I hope that my thoughts will encourage him to try to grind through better stuff.

On Maxwell’s equations and the properties of empty space

Let me first say something about the speed of light indeed. Maxwell’s four equations may look fairly simple, but that’s only until one starts unpacking all those differential vector equations, and it’s only when going through all of their consequences that one starts appreciating their deep mathematical structure. Let me quickly copy how another blogger jotted them down: 🙂

god-said-maxwell-equation

As I showed in my above-mentioned post, the speed of light (i.e. the speed with which an electromagnetic pulse or wave travels through space) is just one of the many consequences of the mathematical structure of Maxwell’s set of equations. As such, the speed of light is a direct consequence of the ‘condition’, or the properties, of the vacuum indeed, as Maxwell suggested when he wrote that “we can scarcely avoid the inference that light consists in the transverse undulations of the same medium which is the cause of electric and magnetic phenomena”.

Of course, while Maxwell still suggests light needs some ‘medium’ here – so that’s a reference to the infamous aether theory – we now know that’s because he was a 19th century scientist, and so we’ve done away with the aether concept (because it’s a redundant hypothesis), and so now we also know there’s absolutely no reason whatsoever to try to “avoid the inference.” 🙂 It’s all OK, indeed: light is some kind of “transverse undulation” of… Well… Of what?

We analyze light as traveling fields, represented by two vectors, E and B, whose direction and magnitude varies both in space as well as in time. E and B are field vectors, and represent the electric and magnetic field respectively. An equivalent formulation – more or less, that is (see my post on the Liénard-Wiechert potentials) – for Maxwell’s equations when only one (moving) charge is involved is:

E

B

This re-formulation, which is Feynman’s preferred formula for electromagnetic radiation, is interesting in a number of ways. It clearly shows that, while we analyze the electric and magnetic field as separate mathematical entities, they’re one and the same phenomenon really, as evidenced by the B = –er×E/c equation, which tells us the magnetic field from a single moving charge is always normal (i.e. perpendicular) to the electric field vector, and also that B‘s magnitude is 1/times the magnitude of E, so |B| = B = |E|/c = E/c. In short, B is fully determined by E, or vice versa: if we have one of the two fields, we have the other, so they’re ‘one and the same thing’ really—not in a mathematical sense, but in a real sense.

Also note that E and B‘s magnitude is just the same if we’re using natural units, so if we equate c with 1. Finally, as I pointed out in my post on the relativity of electromagnetic fields, if we would switch from one reference frame to another, we’ll have a different mix of E and B, but that different mix obviously describes the same physical reality. More in particular, if we’d be moving with the charges, the magnetic field sort of disappears to re-appear as an electric field. So the Lorentz force F = Felectric + Fmagnetic = qE + qv×B is one force really, and its ‘electric’ and ‘magnetic’ component appear the way they appear in our reference frame only. In some other reference frame, we’d have the same force, but its components would look different, even if they, obviously, would and should add up to the same. [Well… Yes and no… You know there’s relativistic corrections to be made to the forces to, but that’s a minor point, really. The force surely doesn’t disappear!]

All of this reinforces what you know already: electricity and magnetism are part and parcel of one and the same phenomenon, the electromagnetic force field, and Maxwell’s equations are the most elegant way of ‘cutting it up’. Why elegant? Well… Click the Occam tab. 🙂

Now, after having praised Maxwell once more, I must say that Feynman’s equations above have another advantage. In Maxwell’s equations, we see two constants, the electric and magnetic constant (denoted by μand ε0 respectively), and Maxwell’s equations imply that the product of the electric and magnetic constant is the reciprocal of c2: μ0·ε= 1/c2. So here we see εand only, so no μ0, so that makes it even more obvious that the magnetic and electric constant are related one to another through c.

[…] Let me digress briefly: why do we have c2 in μ0·ε= 1/c2, instead of just c? That’s related to the relativistic nature of the magnetic force: think about that B = E/c relation. Or, better still, think about the Lorentz equation F = Felectric + Fmagnetic = qE + qv×B = q[E + (v/c)×(E×er)]: the 1/c factor is there because the magnetic force involves some velocity, and any velocity is always relative—and here I don’t mean relative to the frame of reference but relative to the (absolute) speed of light! Indeed, it’s the v/c ratio (usually denoted by β = v/c) that enters all relativistic formulas. So the left-hand side of the μ0·ε= 1/c2 equation is best written as (1/c)·(1/c), with one of the two 1/c factors accounting for the fact that the ‘magnetic’ force is a relativistic effect of the ‘electric’ force, really, and the other 1/c factor giving us the proper relationship between the magnetic and the electric constant. To drive home the point, I invite you to think about the following:

  • μ0 is expressed in (V·s)/(A·m), while εis expressed in (A·s)/(V·m), so the dimension in which the μ0·εproduct is expressed is [(V·s)/(A·m)]·[(A·s)/(V·m)] = s2/m2, so that’s the dimension of 1/c2.
  • Now, this dimensional analysis makes it clear that we can sort of distribute 1/c2 over the two constants. All it takes is re-defining the fundamental units we use to calculate stuff, i.e. the units for electric charge, for distance, for time and for force – or for inertia, as explained above. But so we could, if we wanted, equate both μ0 as well as εwith 1/c.
  • Now, if we would then equate c with 1, we’d have μ0 = ε= c = 1. We’d have to define our units for electric charge, for distance, for time and for force accordingly, but it could be done, and then we could re-write Maxwell’s set of equations using these ‘natural’ units.

In any case, the nitty-gritty here is less important: the point is that μand εare also related through the speed of light and, hence, they are ‘properties’ of the vacuum as well. [I may add that this is quite obvious if you look at their definition, but we’re approaching the matter from another angle here.]

In any case, we’re done with this. On to the next!

On quantum oscillations, Planck’s constant, and Planck units 

The second thought I want to develop is about the mentioned quantum oscillation. What is it? Or what could it be? An electromagnetic wave is caused by a moving electric charge. What kind of movement? Whatever: the charge could move up or down, or it could just spin around some axis—whatever, really. For example, if it spins around some axis, it will have a magnetic moment and, hence, the field is essentially magnetic, but then, again, E and B are related and so it doesn’t really matter if the first cause is magnetic or electric: that’s just our way of looking at the world: in another reference frame, one that’s moving with the charges, the field would essential be electric. So the motion can be anything: linear, rotational, or non-linear in some irregular way. It doesn’t matter: any motion can always be analyzed as the sum of a number of ‘ideal’ motions. So let’s assume we have some elementary charge in space, and it moves and so it emits some electromagnetic radiation.

So now we need to think about that oscillation. The key question is: how small can it be? Indeed, in one of my previous posts, I tried to explain some of the thinking behind the idea of the ‘Great Desert’, as physicists call it. The whole idea is based on our thinking about the limit: what is the smallest wavelength that still makes sense? So let’s pick up that conversation once again.

The Great Desert lies between the 1032 and 1043 Hz scale. 1032 Hz corresponds to a photon energy of Eγ = h·f = (4×10−15 eV·s)·(1032 Hz) = 4×1017 eV = 400,000 tera-electronvolt (1 TeV = 1012 eV). I use the γ (gamma) subscript in my Eγ symbol for two reasons: (1) to make it clear that I am not talking the electric field E here but energy, and (2) to make it clear we are talking ultra-high-energy gamma-rays here.

In fact, γ-rays of this frequency and energy are theoretical only. Ultra-high-energy gamma-rays are defined as rays with photon energies higher than 100 TeV, which is the upper limit for very-high-energy gamma-rays, which have been observed as part of the radiation emitted by so-called gamma-ray bursts (GRBs): flashes associated with extremely energetic explosions in distant galaxies. Wikipedia refers to them as the ‘brightest’ electromagnetic events know to occur in the Universe. These rays are not to be confused with cosmic rays, which consist of high-energy protons and atomic nuclei stripped of their electron shells. Cosmic rays aren’t rays really and, because they consist of particles with a considerable rest mass, their energy is even higher. The so-called Oh-My-God particle, for example, which is the most energetic particle ever detected, had an energy of 3×1020 eV, i.e. 300 million TeV. But it’s not a photon: its energy is largely kinetic energy, with the rest mass m0 counting for a lot in the m in the E = m·c2 formula. To be precise: the mentioned particle was thought to be an iron nucleus, and it packed the equivalent energy of a baseball traveling at 100 km/h! 

But let me refer you to another source for a good discussion on these high-energy particles, so I can get get back to the energy of electromagnetic radiation. When I talked about the Great Desert in that post, I did so using the Planck-Einstein relation (E = h·f), which embodies the idea of the photon being valid always and everywhere and, importantly, at every scale. I also discussed the Great Desert using real-life light being emitted by real-life atomic oscillators. Hence, I may have given the (wrong) impression that the idea of a photon as a ‘wave train’ is inextricably linked with these real-life atomic oscillators, i.e. to electrons going from one energy level to the next in some atom. Let’s explore these assumptions somewhat more.

Let’s start with the second point. Electromagnetic radiation is emitted by any accelerating electric charge, so the atomic oscillator model is an assumption that should not be essential. And it isn’t. For example, whatever is left of the nucleus after alpha or beta decay (i.e. a nuclear decay process resulting in the emission of an α- or β-particle) it likely to be in an excited state, and likely to emit a gamma-ray for about 10−12 seconds, so that’s a burst that’s about 10,000 times shorter than the 10–8 seconds it takes for the energy of a radiating atom to die out. [As for the calculation of that 10–8 sec decay time – so that’s like 10 nanoseconds – I’ve talked about this before but it’s probably better to refer you to the source, i.e. one of Feynman’s Lectures.]

However, what we’re interested in is not the energy of the photon, but the energy of one cycle. In other words, we’re not thinking of the photon as some wave train here, but what we’re thinking about is the energy that’s packed into a space corresponding to one wavelength. What can we say about that?

As you know, that energy will depend both on the amplitude of the electromagnetic wave as well as its frequency. To be precise, the energy is (1) proportional to the square of the amplitude, and (2) proportional to the frequency. Let’s look at the first proportionality relation. It can be written in a number of ways, but one way of doing it is stating the following: if we know the electric field, then the amount of energy that passes per square meter per second through a surface that is normal to the direction in which the radiation is going (which we’ll denote by S – the s from surface – in the formula below), must be proportional to the average of the square of the field. So we write S ∝ 〈E2〉, and so we should think about the constant of proportionality now. Now, let’s not get into the nitty-gritty, and so I’ll just refer to Feynman for the derivation of the formula below:

S = ε0c·〈E2

So the constant of proportionality is ε0c. [Note that, in light of what we wrote above, we can also write this as S = (1/μ0·c)·〈(c·B)2〉 = (c0)·〈B2〉, so that underlines once again that we’re talking one electromagnetic phenomenon only really.] So that’s a nice and rather intuitive result in light of all of the other formulas we’ve been jotting down. However, it is a ‘wave’ perspective. The ‘photon’ perspective assumes that, somehow, the amplitude is given and, therefore, the Planck-Einstein relation only captures the frequency variable: Eγ = h·f.

Indeed, ‘more energy’ in the ‘wave’ perspective basically means ‘more photons’, but photons are photons: they have a definite frequency and a definite energy, and both are given by that Planck-Einstein relation. So let’s look at that relation by doing a bit of dimensional analysis:

  • Energy is measured in electronvolt or, using SI units, joule: 1 eV ≈ 1.6×10−19 J. Energy is force times distance: 1 joule = 1 newton·meter, which means that a larger force over a shorter distance yields the same energy as a smaller force over a longer distance. The oscillations we’re talking about here involve very tiny distances obviously. But the principle is the same: we’re talking some moving charge q, and the power – which is the time rate of change of the energy – that goes in or out at any point of time is equal to dW/dt = F·v, with W the work that’s being done by the charge as it emits radiation.
  • I would also like to add that, as you know, forces are related to the inertia of things. Newton’s Law basically defines a force as that what causes a mass to accelerate: F = m·a = m·(dv/dt) = d(m·v)/dt = dp/dt, with p the momentum of the object that’s involved. When charges are involved, we’ve got the same thing: a potential difference will cause some current to change, and one of the equivalents of Newton’s Law F = m·a = m·(dv/dt) in electromagnetism is V = L·(dI/dt). [I am just saying this so you get a better ‘feel’ for what’s going on.]
  • Planck’s constant is measured in electronvolt·seconds (eV·s) or in, using SI units, in joule·seconds (J·s), so its dimension is that of (physical) action, which is energy times time: [energy]·[time]. Again, a lot of energy during a short time yields the same energy as less energy over a longer time. [Again, I am just saying this so you get a better ‘feel’ for these dimensions.]
  • The frequency f is the number of cycles per time unit, so that’s expressed per second, i.e. in herz (Hz) = 1/second = s−1.

So… Well… It all makes sense: [x joule] = [6.626×10−34 joule]·[1 second]×[f cycles]/[1 second]. But let’s try to deepen our understanding even more: what’s the Planck-Einstein relation really about?

To answer that question, let’s think some more about the wave function. As you know, it’s customary to express the frequency as an angular frequency ω, as used in the wave function A(x, t) = A0·sin(kx − ωt). The angular frequency is the frequency expressed in radians per second. That’s because we need an angle in our wave function, and so we need to relate x and t to some angle. The way to think about this is as follows: one cycle takes a time T (i.e. the period of the wave) which is equal to T = 1/f. Yes: one second divided by the number of cycles per second gives you the time that’s needed for one cycle. One cycle is also equivalent to our argument ωt going around the full circle (i.e. 2π), so we write:  ω·T = 2π and, therefore:

ω = 2π/T = 2π·f

Now we’re ready to play with the Planck-Einstein relation. We know it gives us the energy of one photon really, but what if we re-write our equation Eγ = h·f as Eγ/f = h? The dimensions in this equation are:

[x joule]·[1 second]/[cyles] = [6.626×10−34 joule]·[1 second]

⇔ = 6.626×10−34 joule per cycle

So that means that the energy per cycle is equal to 6.626×10−34 joule, i.e. the value of Planck’s constant.

Let me rephrase truly amazing result, so you appreciate it—perhaps: regardless of the frequency of the light (or our electromagnetic wave, in general) involved, the energy per cycle, i.e. per wavelength or per period, is always equal to 6.626×10−34 joule or, using the electronvolt as the unit, 4.135667662×10−15 eV. So, in case you wondered, that is the true meaning of Planck’s constant!

Now, if we have the frequency f, we also have the wavelength λ, because the velocity of the wave is the frequency times the wavelength: = λ·f and, therefore, λ = c/f. So if we increase the frequency, the wavelength becomes smaller and smaller, and so we’re packing the same amount of energy – admittedly, 4.135667662×10−15 eV is a very tiny amount of energy – into a space that becomes smaller and smaller. Well… What’s tiny, and what’s small? All is relative, of course. 🙂 So that’s where the Planck scale comes in. If we pack that amount of energy into some tiny little space of the Planck dimension, i.e. a ‘length’ of 1.6162×10−35 m, then it becomes a tiny black hole, and it’s hard to think about how that would work.

[…] Let me make a small digression here. I said it’s hard to think about black holes but, of course, it’s not because it’s ‘hard’ that we shouldn’t try it. So let me just mention a few basic facts. For starters, black holes do emit radiation! So they swallow stuff, but they also spit stuff out. More in particular, there is the so-called Hawking radiation, as Roger Penrose and Stephen Hawking discovered.

Let me quickly make a few remarks on that: Hawking radiation is basically a form of blackbody radiation, so all frequencies are there, as shown below: the distribution of the various frequencies depends on the temperature of the black body, i.e. the black hole in this case. [The black curve is the curve that Lord Rayleigh and Sir James Jeans derived in the late 19th century, using classical theory only, so that’s the one that does not correspond to experimental fact, and which led Max Planck to become the ‘reluctant’ father of quantum mechanics. In any case, that’s history and so I shouldn’t dwell on this.]

600px-Black_body

The interesting thing about blackbody radiation, including Hawking radiation, is that it reduces energy and, hence, the equivalent mass of our blackbody. So Hawking radiation reduces the mass and energy of black holes and is therefore also known as black hole evaporation. So black holes that lose more mass than they gain through other means are expected to shrink and ultimately vanish. Therefore, there’s all kind of theories that say why micro black holes, like that Planck scale black hole we’re thinking of right now, should be much larger net emitters of radiation than large black holes and, hence, whey they should shrink and dissipate faster.

Hmm… Interesting… What do we do with all of this information? Well… Let’s think about it as we continue our trek on this long journey to reality over the next year or, more probably, years (plural). 🙂

The key lesson here is that space and time are intimately related because of the idea of movement, i.e. the idea of something having some velocity, and that it’s not so easy to separate the dimensions of time and distance in any hard and fast way. As energy scales become larger and, therefore, our natural time and distance units become smaller and smaller, it’s the energy concept that comes to the fore. It sort of ‘swallows’ all other dimensions, and it does lead to limiting situations which are hard to imagine. Of course, that just underscores the underlying unity of Nature, and the mysteries involved.

So… To relate all of this back to the story that our professor is trying to tell, it’s a simple story really. He’s talking about two fundamental constants basically, c and h, pointing out that c is a property of empty space, and h is related to something doing something. Well… OK. That’s really nothing new, and surely not ground-breaking research. 🙂

Now, let me finish my thoughts on all of the above by making one more remark. If you’ve read a thing or two about this – which you surely have – you’ll probably say: this is not how people usually explain it. That’s true, they don’t. Anything I’ve seen about this just associates the 1043 Hz scale with the 1028 eV energy scale, using the same Planck-Einstein relation. For example, the Wikipedia article on micro black holes writes that “the minimum energy of a microscopic black hole is 1019 GeV [i.e. 1028 eV], which would have to be condensed into a region on the order of the Planck length.” So that’s wrong. I want to emphasize this point because I’ve been led astray by it for years. It’s not the total photon energy, but the energy per cycle that counts. Having said that, it is correct, however, and easy to verify, that the 1043 Hz scale corresponds to a wavelength of the Planck scale: λ = c/= (3×10m/s)/(1043 s−1) = 3×10−35 m. The confusion between the photon energy and the energy per wavelength arises because of the idea of a photon: it travels at the speed of light and, hence, because of the relativistic length contraction effect, it is said to be point-like, to have no dimension whatsoever. So that’s why we think of packing all of its energy in some infinitesimally small place. But you shouldn’t think like that. The photon is dimensionless in our reference frame: in its own ‘world’, it is spread out, so it is a wave train. And it’s in its ‘own world’ that the contradictions start… 🙂

OK. Done!

My third and final point is about what our professor writes on the fundamental physical constants, and more in particular on what he writes on the fine-structure constant. In fact, I could just refer you to my own post on it, but that’s probably a bit too easy for me and a bit difficult for you 🙂 so let me summarize that post and tell you what you need to know about it.

The fine-structure constant

The fine-structure constant α is a dimensionless constant which also illustrates the underlying unity of Nature, but in a way that’s much more fascinating than the two or three things the professor mentions. Indeed, it’s quite incredible how this number (α = 0.00729735…, but you’ll usually see it written as its reciprocal, which is a number that’s close to 137.036…) links charge with the relative speeds, radii, and the mass of fundamental particles and, therefore, how this number also these concepts with each other. And, yes, the fact that it is, effectively, dimensionless, unlike h or c, makes it even more special. Let me quickly sum up what the very same number α all stands for:

(1) α is the square of the electron charge expressed in Planck units: α = eP2.

(2) α is the square root of the ratio of (a) the classical electron radius and (b) the Bohr radius: α = √(re /r). You’ll see this more often written as re = α2r. Also note that this is an equation that does not depend on the units, in contrast to equation 1 (above), and 4 and 5 (below), which require you to switch to Planck units. It’s the square of a ratio and, hence, the units don’t matter. They fall away.

(3) α is the (relative) speed of an electron: α = v/c. [The relative speed is the speed as measured against the speed of light. Note that the ‘natural’ unit of speed in the Planck system of units is equal to c. Indeed, if you divide one Planck length by one Planck time unit, you get (1.616×10−35 m)/(5.391×10−44 s) = m/s. However, this is another equation, just like (2), that does not depend on the units: we can express v and c in whatever unit we want, as long we’re consistent and express both in the same units.]

(4) α is also equal to the product of (a) the electron mass (which I’ll simply write as me here) and (b) the classical electron radius re (if both are expressed in Planck units): α = me·re. Now think that’s, perhaps, the most amazing of all of the expressions for α. [If you don’t think that’s amazing, I’d really suggest you stop trying to study physics. :-)]

Also note that, from (2) and (4), we find that:

(5) The electron mass (in Planck units) is equal me = α/r= α/α2r = 1/αr. So that gives us an expression, using α once again, for the electron mass as a function of the Bohr radius r expressed in Planck units.

Finally, we can also substitute (1) in (5) to get:

(6) The electron mass (in Planck units) is equal to me = α/r = eP2/re. Using the Bohr radius, we get me = 1/αr = 1/eP2r.

So… As you can see, this fine-structure constant really links all of the fundamental properties of the electron: its charge, its radius, its distance to the nucleus (i.e. the Bohr radius), its velocity, its mass (and, hence, its energy),…

So… Why is what it is?

Well… We all marvel at this, but what can we say about it, really? I struggle how to interpret this, just as much – or probably much more 🙂 – as the professor who wrote the article I don’t like (because it’s so imprecise, and that’s what made me write all what I am writing here).

Having said that, it’s obvious that it points to a unity beyond these numbers and constants that I am only beginning to appreciate for what it is: deep, mysterious, and very beautiful. But so I don’t think that professor does a good job at showing how deep, mysterious and beautiful it all is. But then that’s up to you, my brother and you, my imaginary reader, to judge, of course. 🙂

[…] I forgot to mention what I mean with ‘Planck units’. Well… Once again, I should refer you to one of my other posts. But, yes, that’s too easy for me and a bit difficult for you. 🙂 So let me just note we get those Planck units by equating not less than five fundamental physical constants to 1, notably (1) the speed of light, (2) Planck’s (reduced) constant, (3) Boltzmann’s constant, (4) Coulomb’s constant and (5) Newton’s constant (i.e. the gravitational constant). Hence, we have a set of five equations here (ħ = kB = ke = G = 1), and so we can solve that to get the five Planck units, i.e. the Planck length unit, the Planck time unit, the Planck mass unit, the Planck energy unit, the Planck charge unit and, finally (oft forgotten), the Planck temperature unit. Of course, you should note that all mass and energy units are directly related because of the mass-energy equivalence relation E = mc2, which simplifies to E = m if c is equated to 1. [I could also say something about the relation between temperature and (kinetic) energy, but I won’t, as it would only further confuse you.]

OK. Done! 🙂

Addendum: How to think about space and time?

If you read the argument on the Planck scale and constant carefully, then you’ll note that it does not depend on the idea of an indivisible photon. However, it does depend on that Planck-Einstein relation being valid always and everywhere. Now, the Planck-Einstein relation is, in its essence, a fairly basic result from classical electromagnetic theory: it incorporates quantum theory – remember: it’s the equation that allowed Planck to solve the black-body radiation problem, and so it’s why they call Planck the (reluctant) ‘Father of Quantum Theory’ – but it’s not quantum theory.

So the obvious question is: can we make this reflection somewhat more general, so we can think of the electromagnetic force as an example only. In other words: can we apply the thoughts above to any force and any movement really?

The truth is: I haven’t advanced enough in my little study to give the equations for the other forces. Of course, we could think of gravity, and I developed some thoughts on how gravity waves might look like, but nothing specific really. And then we have the shorter-range nuclear forces, of course: the strong force, and the weak force. The laws involved are very different. The strong force involves color charges, and the way distances work is entirely different. So it would surely be some different analysis. However, the results should be the same. Let me offer some thoughts though:

  • We know that the relative strength of the nuclear force is much larger, because it pulls like charges (protons) together, despite the strong electromagnetic force that wants to push them apart! So the mentioned problem of trying to ‘pack’ some oscillation in some tiny little space should be worse with the strong force. And the strong force is there, obviously, at tiny little distances!
  • Even gravity should become important, because if we’ve got a lot of energy packed into some tiny space, its equivalent mass will ensure the gravitational forces also become important. In fact, that’s what the whole argument was all about!
  • There’s also all this talk about the fundamental forces becoming one at the Planck scale. I must, again, admit my knowledge is not advanced enough to explain how that would be possible, but I must assume that, if physicists are making such statements, the argument must be fairly robust.

So… Whatever charge or whatever force we are talking about, we’ll be thinking of waves or oscillations—or simply movement, but it’s always a movement in a force field, and so there’s power and energy involved (energy is force times distance, and power is the time rate of change of energy). So, yes, we should expect the same issues in regard to scale. And so that’s what’s captured by h.

As we’re talking the smallest things possible, I should also mention that there are also other inconsistencies in the electromagnetic theory, which should (also) have their parallel for other forces. For example, the idea of a point charge is mathematically inconsistent, as I show in my post on fields and charges. Charge, any charge really, must occupy some space. It cannot all be squeezed into one dimensionless point. So the reasoning behind the Planck time and distance scale is surely valid.

In short, the whole argument about the Planck scale and those limits is very valid. However, does it imply our thinking about the Planck scale is actually relevant? I mean: it’s not because we can imagine how things might look like  – they may look like those tiny little black holes, for example – that these things actually exist. GUT or string theorists obviously think they are thinking about something real. But, frankly, Feynman had a point when he said what he said about string theory, shortly before his untimely death in 1988: “I don’t like that they’re not calculating anything. I don’t like that they don’t check their ideas. I don’t like that for anything that disagrees with an experiment, they cook up an explanation—a fix-up to say, ‘Well, it still might be true.'”

It’s true that the so-called Standard Model does not look very nice. It’s not like Maxwell’s equations. It’s complicated. It’s got various ‘sectors’: the electroweak sector, the QCD sector, the Higgs sector,… So ‘it looks like it’s got too much going on’, as a friend of mine said when he looked at a new design for mountainbike suspension. 🙂 But, unlike mountainbike designs, there’s no real alternative for the Standard Model. So perhaps we should just accept it is what it is and, hence, in a way, accept Nature as we can see it. So perhaps we should just continue to focus on what’s here, before we reach the Great Desert, rather than wasting time on trying to figure out how things might look like on the other side, especially because we’ll never be able to test our theories about ‘the other side.’

On the other hand, we can see where the Great Desert sort of starts (somewhere near the 1032 Hz scale), and so it’s only natural to think it should also stop somewhere. In fact, we know where it stops: it stops at the 1043 Hz scale, because everything beyond that doesn’t make sense. The question is: is there actually there? Like fundamental strings or whatever you want to call it. Perhaps we should just stop where the Great Desert begins. And what’s the Great Desert anyway? Perhaps it’s a desert indeed, and so then there is absolutely nothing there. 🙂

Hmm… There’s not all that much one can say about it. However, when looking at the history of physics, there’s one thing that’s really striking. Most of what physicists can think of, in the sense that it made physical sense, turned out to exist. Think of anti-matter, for instance. Paul Dirac thought it might exist, that it made sense to exist, and so everyone started looking for it, and Carl Anderson found in a few years later (in 1932). In fact, it had been observed before, but people just didn’t pay attention, so they didn’t want to see it, in a way. […] OK. I am exaggerating a bit, but you know what I mean. The 1930s are full of examples like that. There was a burst of scientific creativity, as the formalism of quantum physics was being developed, and the experimental confirmations of the theory just followed suit.

In the field of astronomy, or astrophysics I should say, it was the same with black holes. No one could really imagine the existence of black holes until the 1960s or so: they were thought of a mathematical curiosity only, a logical possibility. However, the circumstantial evidence now is quite large and so… Well… It seems a lot of what we can think of actually has some existence somewhere. 🙂

So… Who knows? […] I surely don’t. And so I need to get back to the grind and work my way through the rest of Feynman’s Lectures and the related math. However, this was a nice digression, and so I am grateful to my brother he initiated it. 🙂