Explaining the Lamb shift in classical terms

Corona-virus is bad, but it does have one advantage: more time to work on my hobby ! I finally managed to have a look at what the (in)famous Lamb shift may or may not be. Here is the link to the paper.

I think it’s good. Why? Well… It’s that other so-called ‘high precision test’ of mainstream quantum mechanics (read: quantum field theory)m but so I found it’s just like the rest: ‘Cargo Cult Science.’ [I must acknowledge a fellow amateur physicist and blogger for that reference: it is, apparently, a term coined by Richard Feynman!]

To All: Enjoy and please keep up the good work in these very challenging times !

🙂

Making sense of it all

In recent posts, we have been very harsh in criticizing mainstream academics for not even trying to make sense of quantum mechanics—labeling them as mystery wallahs or, worse, as Oliver Consa does, frauds. While we think the latter criticism is fully justified –we can and should think of some of the people we used to admire as frauds now – I think we should also acknowledge most of the professional physicists are actually doing what we all are doing and that is to, somehow, try to make sense of it all. Nothing more, nothing less.

However, they are largely handicapped: we can say or whatever we write, and we do not need to think about editorial lines. In other words: we are free to follow logic and practice real science. Let me insert a few images here to lighten the discussion. One is a cartoon from the web and the other was sent to me by a friendly academic. As for the painting, if you don’t know him already, you should find out for yourself. 🙂

Both mainstream as well as non-mainstream insiders and outsiders are having very heated discussions nowadays. When joining such discussions, I think we should start by acknowledging that Nature is actually difficult to understand: if it would be easy, we would not be struggling with it. Hence, anyone who wants you to believe it actually all is easy and self-evident is a mystery wallah or a fraud too—at the other end of the spectrum!

For example, I really do believe that the ring current model of elementary particles elegantly combines wave-particle duality and, therefore, avoids countless dichotomies (such as the boson-fermion dichotomy, for example) that have hampered mankind’s understanding of what an elementary particle might actually be. At the same time, I also acknowledge that the model raises its own set of very fundamental questions (see our paper on the nature of antimatter and some other unresolved issues) and can, therefore, be challenged as well. In short, I don’t want to come across as being religious about our own interpretation of things because it is what it is: an interpretation of things we happen to believe in. Why? Because it happens to come across as being more rational, simpler or – to use Dirac’s characterization of a true theory – just beautiful.

So why are we having so much trouble accepting the Copenhagen interpretation of quantum mechanics? Why are we so shocked by Consa’s story on man’s ambition in this particular field of human activity—as opposed to, say, politics or business? It’s because people like you and me thought these men were like us—much cleverer, perhaps, but, otherwise, totally like us: people searching for truth—or some basic version of it, at least! That’s why Consa’s conclusion hurts us so much:

“QED should be the quantized version of Maxwell’s laws, but it is not that at all. […] QED is a bunch of fudge factors, numerology, ignored infinities, hocus-pocus, manipulated calculations, illegitimate mathematics, incomprehensible theories, hidden data, biased experiments, miscalculations, suspicious coincidences, lies, arbitrary substitutions of infinite values and budgets of 600 million dollars to continue the game.”

Amateur physicists like you and me thought we were just missing something: some glaring (in)consistency in their or our theories which we just couldn’t see but that, inevitably, we would suddenly stumble upon while wracking our brains trying to grind through it all. We naively thought all of the sleepless nights, all the agony and all the sacrifices in terms of time and trouble would pay off, one day, at least! But, no, we’ve been wasting countless years to try to understand something which one can’t understand anyway—something which is, quite simply, not true. It was nothing but a bright shining lie and our anger is, therefore, fully justified. It sure did not do much to improve our mental and physical well-being, did it?

Such indignation may be justified but it doesn’t answer the more fundamental question: why did we even bother? Why are we so passionate about these things? Why do we feel that the Copenhagen interpretation cannot be right? One reason, of course, is that we were never alone here. The likes of Einstein, Dirac, and even Bell told us all along. Now that I think of it, all mainstream physicists that I know are critical of us – amateur physicists – but, at the same time, are also openly stating that the Standard Model isn’t satisfactory—and I am really thinking of mainstream researchers here: the likes of Zwiebach, Hossenfelder, Smolin, Gasparan, Batelaan, Pohl and so many others: they are all into string theory or, else, trying to disprove this or that quantum-mechanical theorem. [Batelaan’s reseach on the exchange of momentum in the electron double-slit experiment, for example, is very interesting in this regard.]

In fact, now that I think of it: can you give me one big name who is actually passionate about the Standard Model—apart from one or two Nobel Prize winners who got an undeserved price for it? If no one thinks it can be  right, then why can’t we just accept it just isn’t?

I’ve come to the conclusion the ingrained abhorrence – both of professional as well as of amateur physicists – is rooted in this: the Copenhagen interpretation amounts to a surrender of reason. It is, therefore, not science, but religion. Stating that it is a law of Nature that even experts cannot possibly understand Nature “the way they would like to”, as Richard Feynman put it, is both intuitively as well as rationally unacceptable.

Intuitively—and rationally? That’s a contradictio in terminis, isn’t it? We don’t think so. I think this is an outstanding example of a locus in our mind where intuition and rationality do meet each other.

The metaphysics of physics

I just produced a first draft of the Metaphysics page of my new physics site. It does not only deal with the fundamental concepts we have been developing but – as importantly, if not more – it also offers some thoughts on all of the unanswered questions which, when trying to do science and be logical, are at least as important as the questions we do consider to be solved. Click the link or the tab. Enjoy ! 🙂 As usual, feedback is more than welcome!

Mainstream QM: A Bright Shining Lie

Yesterday night, I got this email from a very bright young physicist: Dr. Oliver Consa. He is someone who – unlike me – does have the required Dr and PhD credentials in physics (I have a drs. title in economics) – and the patience that goes with it – to make some more authoritative statements in the weird world of quantum mechanics. I recommend you click the link in the email (copied below) and read the paper. Please do it! 

It is just 12 pages, and it is all extremely revealing. Very discomforting, actually, in light of all the other revelations on fake news in other spheres of life.

Many of us – and, here, I just refer to those who are reading my post – all sort of suspected that some ‘inner circle’ in the academic circuit had cooked things up:the Mystery Wallahs, as I refer to them now. Dr. Consa’s paper shows our suspicion is well-founded.

QUOTE

Dear fellow scientist,

I send you this mail because you have been skeptical about Foundations of Physics. I think that this new paper will be of your interest. Feel free to share it with your colleagues or publish it on the web. I consider it important that this paper serves to open a public debate on this subject.

Something is Rotten in the State of QED
https://vixra.org/pdf/2002.0011v1.pdf

Abstract
“Quantum electrodynamics (QED) is considered the most accurate theory in the history of science. However, this precision is based on a single experimental value: the anomalous magnetic moment of the electron (g-factor). An examination of QED history reveals that this value was obtained using illegitimate mathematical traps, manipulations and tricks. These traps included the fraud of Kroll & Karplus, who acknowledged that they lied in their presentation of the most relevant calculation in QED history. As we will demonstrate in this paper, the Kroll & Karplus scandal was not a unique event. Instead, the scandal represented the fraudulent manner in which physics has been conducted from the creation of QED through today.”  (12 pag.)

Best Regards,
Oliver Consa
oliver.consa@gmail.com

UNQUOTE

A theory of matter-particles

Pre-scriptum (PS), added on 6 March 2020: The ideas below also naturally lead to a theory about what a neutrino might actually be. As such, it’s a complete ‘alternative’ Theory of Everything. I uploaded the basics of such theory on my academia.edu site. For those who do not want to log on to academia.edu, you can also find the paper on my author’s page on Phil Gibb’s site.

Text:

We were rather tame in our last paper on the oscillator model of an electron. We basically took some philosophical distance from it by stating we should probably only think of it as a mathematical equivalent to Hestenes’ concept of the electron as a superconducting loop. However, deep inside, we feel we should not be invoking Maxwell’s laws of electrodynamics to explain what a proton and an electron might actually be. The basics of the ring current model can be summed up in one simple equation:

c = a·ω

This is the formula for the tangential velocity. Einstein’s mass-energy equivalence relation and the Planck-Einstein relation explain everything else[1], as evidenced by the fact that we can immediately derive the Compton radius of an electron from these three equations, as shown below:F1The reader might think we are just ‘casually connecting formulas’ here[2] but we feel we have a full-blown theory of the electron here: simple and consistent. The geometry of the model is visualized below. We think of an electron (and a proton) as consisting of a pointlike elementary charge – pointlike but not dimensionless[3] – moving about at (nearly) the speed of light around the center of its motion.

Picture1

The relation works perfectly well for the electron. However, when applying the a = ħ/mc radius formula to a proton, we get a value which is about 1/4 of the measured proton radius: about 0.21 fm, as opposed to the 0.83-0.84 fm charge radius which was established by Professors Pohl, Gasparan and others over the past decade.[4] In our papers on the proton radius[5],  we motivated the 1/4 factor by referring to the energy equipartition theorem and assuming energy is, somehow, equally split over electromagnetic field energy and the kinetic energy in the motion of the zbw charge. However, the reader must have had the same feeling as we had: these assumptions are rather ad hoc. We, therefore, propose something more radical:

When considering systems (e.g. electron orbitals) and excited states of particles, angular momentum comes in units (nearly) equal to ħ, but when considering the internal structure of elementary particles, (orbital) angular momentum comes in an integer fraction of ħ. This fraction is 1/2 for the electron[6] and 1/4 for the proton.

Let us write this out for the proton radius:F2What are the implications for the assumed centripetal force keeping the elementary charge in motion? The centripetal acceleration is equal to ac = vt2/a = a·ω2. It is probably useful to remind ourselves how we get this result so as to make sure our calculations are relativistically correct. The position vector r (which describes the position of the zbw charge) has a horizontal and a vertical component: x = a·cos(ωt) and y = a·sin(ωt). We can now calculate the two components of the (tangential) velocity vector v = dr/dt as vx = –a·ω·sin(ωt) and vy y = –a· ω·cos(ωt) and, in the next step, the components of the (centripetal) acceleration vector ac: ax = –a·ω2·cos(ωt) and ay = –a·ω2·sin(ωt). The magnitude of this vector is then calculated as follows:

ac2 = ax2 + ay2a2·ω4·cos2(ωt) + a2·ω4·sin2(ωt) = a2·ω4ac = a·ω2 = vt2/a

Now, Newton’s force law tells us that the magnitude of the centripetal force will be equal to:

F = mγ·ac = mγ·a·ω2

As usual, the mγ factor is, once again, the effective mass of the zbw charge as it zitters around the center of its motion at (nearly) the speed of light: it is half the electron mass.[7] If we denote the centripetal force inside the electron as Fe, we can relate it to the electron mass me as follows:F3Assuming our logic in regard to the effective mass of the zbw charge inside a proton is also valid – and using the 4E = ħω and a = ħ/4mc relations – we get the following equation for the centripetal force inside of a proton:
F4How should we think of this? In our oscillator model, we think of the centripetal force as a restoring force. This force depends linearly on the displacement from the center and the (linear) proportionality constant is usually written as k. Hence, we can write Fe and Fp as Fe = -kex and Fp = -kpx respectively. Taking the ratio of both so as to have an idea of the respective strength of both forces, we get this:F5

The ap and ae are acceleration vectors – not the radius. The equation above seems to tell us that the centripetal force inside of a proton gives the zbw charge inside – which is nothing but the elementary charge, of course – an acceleration that is four times that of what might be going on inside the electron.

Nice, but how meaningful are these relations, really? If we would be thinking of the centripetal or restoring force as modeling some elasticity of spacetime – the guts intuition behind far more complicated string theories of matter – then we may think of distinguishing between a fundamental frequency and higher-level harmonics or overtones.[8] We will leave our reflections at that for the time being.

We should add one more note, however. We only talked about the electron and the proton here. What about other particles, such as neutrons or mesons? We do not consider these to be elementary because they are not stable: we think they are not stable because the Planck-Einstein relation is slightly off, which causes them to disintegrate into what we’ve been trying to model here: stable stuff. As for the process of their disintegration, we think the approach that was taken by Gell-Man and others[9] is not productive: inventing new quantities that are supposedly being conserved – such as strangeness – is… Well… As strange as it sounds. We, therefore, think the concept of quarks confuses rather than illuminates the search for a truthful theory of matter.

Jean Louis Van Belle, 6 March 2020

[1] In this paper, we make abstraction of the anomaly, which is related to the zbw charge having a (tiny) spatial dimension.

[2] We had a signed contract with the IOP and WSP scientific publishing houses for our manuscript on a realist interpretation of quantum mechanics (https://vixra.org/abs/1901.0105) which was shot down by this simple comment. We have basically stopped tried convincing mainstream academics from that point onwards.

[3] See footnote 1.

[4] See our paper on the proton radius (https://vixra.org/abs/2002.0160).

[5] See reference above.

[6] The reader may wonder why we did not present the ½ fraction is the first set of equations (calculation of the electron radius). We refer him or her to our previous paper on the effective mass of the zbw charge (https://vixra.org/abs/2003.0094). The 1/2 factor appears when considering orbital angular momentum only.

[7] The reader may not be familiar with the concept of the effective mass of an electron but it pops up very naturally in the quantum-mechanical analysis of the linear motion of electrons. Feynman, for example, gets the equation out of a quantum-mechanical analysis of how an electron could move along a line of atoms in a crystal lattice. See: Feynman’s Lectures, Vol. III, Chapter 16: The Dependence of Amplitudes on Position (https://www.feynmanlectures.caltech.edu/III_16.html). We think of the effective mass of the electron as the relativistic mass of the zbw charge as it whizzes about at nearly the speed of light. The rest mass of the zbw charge itself is close to – but also not quite equal to – zero. Indeed, based on the measured anomalous magnetic moment, we calculated the rest mass of the zbw charge as being equal to about 3.4% of the electron rest mass (https://vixra.org/abs/2002.0315).

[8] For a basic introduction, see my blog posts on modes or on music and physics (e.g. https://readingfeynman.org/2015/08/08/modes-and-music/).

[9] See, for example, the analysis of kaons (K-mesons) in Feynman’s Lectures, Vol. III, Chapter 11, section 5 (https://www.feynmanlectures.caltech.edu/III_11.html#Ch11-S5).

The Mystery Wallahs

I’ve been working across Asia – mainly South Asia – for over 25 years now. You will google the exact meaning but my definition of a wallah is a someone who deals in something: it may be a street vendor, or a handyman, or anyone who brings something new. I remember I was one of the first to bring modern mountain bikes to India, and they called me a gear wallah—because they were absolute fascinated with the number of gears I had. [Mountain bikes are now back to a 2 by 10 or even a 1 by 11 set-up, but I still like those three plateaux in front on my older bikes—and, yes, my collection is becoming way too large but I just can’t do away with it.]

Any case, let me explain the title of this post. I stumbled on the work of the research group around Herman Batelaan in Nebraska. Absolutely fascinating ! Not only did they actually do the electron double-slit experiment, but their ideas on an actual Stern-Gerlach experiment with electrons are quite interesting: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1031&context=physicsgay

I also want to look at their calculations on momentum exchange between electrons in a beam: https://iopscience.iop.org/article/10.1088/1742-6596/701/1/012007.

Outright fascinating. Brilliant ! […]

It just makes me wonder: why is the outcome of this 100-year old battle between mainstream hocus-pocus and real physics so undecided?

I’ve come to think of mainstream physicists as peddlers in mysteries—whence the title of my post. It’s a tough conclusion. Physics is supposed to be the King of Science, right? Hence, we shouldn’t doubt it. At the same time, it is kinda comforting to know the battle between truth and lies rages everywhere—including inside of the King of Science.

JL

The ultimate electron model

A rather eminent professor in physics – who has contributed significantly to solving the so-called ‘proton radius puzzle’ – advised me to not think of the anomalous magnetic moment of the electron as an anomaly. It led to a breakthrough in my thinking of what an electron might actually be. The fine-structure constant should be part and parcel of the model, indeed. Check out my last paper ! I’d be grateful for comments !

I know the title of this post sounds really arrogant. It is what it is. Whatever brain I have has been thinking about these issues consciously and unconsciously for many years now. It looks good to me. When everything is said and done, the function of our mind is to make sense. What’s sense-making? I’d define sense-making as creating consistency between (1) the structure of our ideas and theories (which I’ll conveniently define as ‘mathematical’ here) and (2) what we think of as the structure of reality (which I’ll define as ‘physical’).

I started this blog reading Penrose (see the About page of this blog). And then I just put his books aside and started reading Feynman. I think I should start re-reading Penrose. His ‘mind-physics-math’ triangle makes a lot more sense to me now.

JL

PS: I agree the title of my post is excruciatingly arrogant but – believe me – I could have chosen an even more arrogant title. Why? Because I think my electron model actually explains mass. And it does so in a much more straightforward manner than Higgs, or Brout–Englert–Higgs, or Englert–Brout–Higgs–Guralnik–Hagen–Kibble, Anderson–Higgs, Anderson–Higgs–Kibble, Higgs–Kibble, or ABEGHHK’t (for Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble, and ‘t Hooft) do. [I am just trying to attribute the theory here using the Wikipedia article on it.] 

The proton radius puzzle solved

I thought I’d stop blogging, but I can’t help it: I think you’d find this topic interesting – and my comments are actually too short for a paper or article, so I thought it would be good to throw it out here.

If you follow the weird world of quantum mechanics with some interest, you will have heard the latest news: the ‘puzzle’ of the charge radius of the proton has been solved. To be precise, a more precise electron-proton scattering experiment by the PRad (proton radius) team using the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab has now measured the root mean square (rms) charge radius of the proton as[1]:

rp = 0.831 ± 0.007stat ± 0.012syst fm

If a proton would, somehow, have a pointlike elementary (electric) charge in it, and if it it is in some kind of circular motion (as we presume in Zitterbewegung models of elementary particles), then we can establish a simple relation between the magnetic moment (μ) and the radius (a) of the circular current.

Indeed, the magnetic moment is the current (I) times the surface area of the loop (πa2), and the current is just the product of the elementary charge (qe) and the frequency (f), which we can calculate as f = c/2πa, i.e. the velocity of the charge[2] divided by the circumference of the loop. We write:F1Using the Compton radius of an electron (ae = ħ/mec), this yields the correct magnetic moment for the electron[3]:F2What radius do we get when applying the a = μ/0.24…´10–10 relation to the (experimentally measured) magnetic moment of a proton? I invite the reader to verify the next calculation using CODATA values:F3When I first calculated this, I thought: that’s not good enough. I only have the order of magnitude right. However, when multiplying this with √2, we get a value which fits into the 0.831 ± 0.007 interval. To be precise, we get this:

Of course, you will wonder: how can we justify the √2 factor? I am not sure. It is a charge radius. Hence, the electrons will bounce off because of the electromagnetic fields. The magnetic field of the current ring will be some envelope to the current ring itself. We would, therefore, expect the measured charge radius to be larger than the radius of the current ring (a). There are also the intricacies related to the definition of a root mean square (rms) radius.

I feel this cannot be a coincidence: the difference between our ‘theoretical’ value (0.83065 fm) and the last precision measurement (0.831 fm) is only 0.00035 fm, which is only 5% of the statistical standard deviation (0.007 fm). Proton radius solved?

Maybe. Maybe not. The concluding comments of Physics Today were this: “The PRad radius result, about 0.83 fm, agrees with the smaller value from muonic and now electronic hydrogen spectroscopy measurements. With that, it seems the puzzle is resolved, and the discrepancy was likely due to measurement errors. Unfortunately, the conclusion requires no new physics.” (my italics)

I wonder what kind of new physics they are talking about.

Jean Louis Van Belle, 24 January 2020

PS: I did make a paper out of this (see my academia.edu or viXra.org publications), and I shared it with the PRad team at JLAB. Prof. Dr. Ashot Gasparian was kind enough to acknowledge my email and thought “the approach and numbers are interesting.” Let us see what comes out of it. I need to get back to my day job. 🙂

[1] See: https://www.nature.com/articles/s41586-019-1721-2. See also: https://www.jlab.org/prad/collaboration.html and https://www.jlab.org/experiment-research.

[2] Zitterbewegung models assume an electron consists of a pointlike charge whizzing around some center. The rest mass of the pointlike charge is zero, which is why its velocity is equal to the speed of light. However, because of its motion, it acquires an effective mass – pretty much like a photon, which has mass because of its motion. One can show the effective mass of the pointlike charge – which is a relativistic mass concept – is half the rest mass of the electron: mγ = me/2.

[3] The calculations do away with the niceties of the + or – sign conventions as they focus on the values only. We also invite the reader to add the SI units so as to make sure all equations are consistent from a dimensional point of view. For the values themselves, see the CODATA values on the NIST website (https://physics.nist.gov/cuu/Constants/index.html).

The End of Physics

A young researcher, Oliver Consa, managed to solve a complicated integral: he gave us an accurate calculation of the anomalous magnetic moment based on a (semi-)classical model. Here is the link to his paper, and this is the link to my first-order approach. I admit: he was first. Truth doesn’t need an author. 🙂

This is a great achievement. We now have an electron model that explains all of the mysterious ‘intrinsic’ properties of the electron. It also explains the interference of an electron with itself. Most importantly, the so-called ‘precision test of QED’ (the theoretical and experimental value of the anomalous magnetic moment) also gets a ‘common-sense’ interpretation now. Bye-bye QFT!

So now it’s time for the next step(s). If you have followed this blog, then you know I have a decent photon model too – and other researchers – most are small names but there are one or two big names as well 🙂 – are working to refine it.

The End of Physics is near. Mankind knows everything now. Sadly, this doesn’t solve any of the major issues mankind is struggling with (think of inequality and climate change here). :-/

Post scriptum: When you check the references, it would seem that Consa borrowed a lot of material from the 1990 article he mentions as a reference: David L. Bergman and J. Paul Wesley, Spinning Charged Ring Model of Electron Yielding Anomalous Magnetic Moment, Galilean Electrodynamics, Vol. 1, Sept-Oct 1990, pp. 63–67). It is strange that David Hestenes hadn’t noted this article, because it goes back to the same era during which he tried to launch the Zitterbewegung interpretation of quantum physics ! I really find it very bizarre to see how all these elements for a realist interpretation of quantum physics have been lying around for many decades now. I guess it’s got to do with what Sean Carroll suggested in his 7 Sept 2019 opinion article in the NY Times: mainstream physicists do not want to understand quantum mechanics.

Wikipedia censorship

I started to edit and add to the rather useless Wikipedia article on the Zitterbewegung. No mention of Hestenes or more recent electron models (e.g. Burinskii’s Kerr-Newman geometries. No mention that the model only works for electrons or leptons in general – not for non-leptonic fermions. It’s plain useless. But all the edits/changes/additions were erased by some self-appointed ‘censor’. I protested but then I got reported to the administrator ! What can I say? Don’t trust Wikipedia. Don’t trust any ‘authority’. We live in weird times. The mindset of most professional physicists seems to be governed by ego and the Bohr-Heisenberg Diktatur.

For the record, these are the changes and edits I tried to make. You can compare and judge for yourself. Needless to say, I told them I wouldn’t bother to even try to contribute any more. I published my own article on the Vixrapedia e-encyclopedia. Also, as Vixrapedia did not have an entry on realist interpretations of quantum mechanics, I created one: have a look and let me know what you think. 🙂

Zitterbewegung (“trembling” or “shaking” motion in German) – usually abbreviated as zbw – is a hypothetical rapid oscillatory motion of elementary particles that obey relativistic wave equations. The existence of such motion was first proposed by Erwin Schrödinger in 1930 as a result of his analysis of the wave packet solutions of the Dirac equation for relativistic electrons in free space, in which an interference between positive and negative energy states produces what appears to be a fluctuation (up to the speed of light) of the position of an electron around the median, with an angular frequency of ω = 2mc2/ħ, or approximately 1.5527×1021 radians per second. Paul Dirac was initially intrigued by it, as evidenced by his rather prominent mention of it in his 1933 Nobel Prize Lecture (it may be usefully mentioned he shared this Nobel Prize with Schrödinger):

“The variables give rise to some rather unexpected phenomena concerning the motion of the electron. These have been fully worked out by Schrödinger. It is found that an electron which seems to us to be moving slowly, must actually have a very high frequency oscillatory motion of small amplitude superposed on the regular motion which appears to us. As a result of this oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a prediction which cannot be directly verified by experiment, since the frequency of the oscillatory motion is so high and its amplitude is so small. But one must believe in this consequence of the theory, since other consequences of the theory which are inseparably bound up with this one, such as the law of scattering of light by an electron, are confirmed by experiment.”[1]

In light of Dirac’s later comments on modern quantum theory, it is rather puzzling that he did not pursue the idea of trying to understand charged particles in terms of the motion of a pointlike charge, which is what the Zitterbewegung hypothesis seems to offer. Dirac’s views on non-leptonic fermions – which were then (1950s and 1960s) being analyzed in an effort to explain the ‘particle zoo‘ in terms of decay reactions conserving newly invented or ad hoc quantum numbers such as strangeness[2] – may be summed up by quoting the last paragraph in the last edition of his Principles of Quantum Mechanics:

“Now there are other kinds of interactions, which are revealed in high-energy physics. […] These interactions are not at present sufficiently well understood to be incorporated into a system of equations of motion.”[3]

Indeed, in light of this stated preference for kinematic models, it is somewhat baffling that Dirac did not follow up on this or any of the other implications of the Zitterbewegung hypothesis, especially because it should be noted that a reexamination of Dirac theory shows that interference between positive and negative energy states is not a necessary ingredient of Zitterbewegung theories.[4] The Zitterbewegung hypothesis also seems to offer interesting shortcuts to key results of mainstream quantum theory. For example, one can show that, for the hydrogen atom, the Zitterbewegung produces the Darwin term which plays the role in the fine structure as a small correction of the energy level of the s-orbitals.[5] This is why authors such as Hestenes refers to it as a possible alternative interpretation of mainstream quantum mechanics, which may be an exaggerated claim in light of the fact that the zbw hypothesis results from the study of electron behavior only.

Zitterbewegung models have mushroomed[6] and it is, therefore, increasingly difficult to distinguish between them. The key to understanding and distinguishing the various Zitterbewegung models may well be Wheeler‘s ‘mass without mass’ idea, which implies a distinction between the idea of (i) a pointlike electric charge (i.e. the idea of a charge only, with zero rest mass) and (ii) the idea of an electron as an elementary particle whose equivalent mass is the energy of the zbw oscillation of the pointlike charge.[7] The ‘mass without mass’ concept requires a force to act on a charge – and a charge only – to explain why a force changes the state of motion of an object – its momentum p = mγ·v(with γ referring to the Lorentz factor) – in accordance with the (relativistically correct) F = dp/dt force law.

History

As mentioned above, the zbw hypothesis goes back to Schrödinger’s and Dirac’s efforts to try to explain what an electron actually is. Unfortunately, both interpreted the electron as a pointlike particle with no ‘internal structure’.David Hestenes is to be credited with reviving the Zitterbewegung hypothesis in the early 1990s. While acknowledging its origin as a (trivial) solution to Dirac’s equation for electrons, Hestenes argues the Zitterbewegung should be related to the intrinsic properties of the electron (charge, spin and magnetic moment). He argues that the Zitterbewegung hypothesis amounts to a physical interpretation of the elementary wavefunction or – more boldly – to a possible physical interpretation of all of quantum mechanics: “Spin and phase [of the wavefunction] are inseparably related — spin is not simply an add-on, but an essential feature of quantum mechanics. […] A standard observable in Dirac theory is the Dirac current, which doubles as a probability current and a charge current. However, this does not account for the magnetic moment of the electron, which many investigators conjecture is due to a circulation of charge. But what is the nature of this circulation? […] Spin and phase must be kinematical features of electron motion. The charge circulation that generates the magnetic moment can then be identified with the Zitterbewegung of Schrödinger “[8] Hestenes’ interpretation amounts to an kinematic model of an electron which can be described in terms of John Wheeler‘s mass without mass concept.[9] The rest mass of the electron is analyzed as the equivalent energy of an orbital motion of a pointlike charge. This pointlike charge has no rest mass and must, therefore, move at the speed of light (which confirms Dirac’s en Schrödinger’s remarks on the nature of the Zitterbewegung). Hestenes summarizes his interpretation as follows: “The electron is nature’s most fundamental superconducting current loop. Electron spin designates the orientation of the loop in space. The electron loop is a superconducting LC circuit. The mass of the electron is the energy in the electron’s electromagnetic field. Half of it is magnetic potential energy and half is kinetic.”[10]

Hestenes‘ articles and papers on the Zitterbewegung discuss the electron only. The interpretation of an electron as a superconducting ring of current (or as a (two-dimensional) oscillator) also works for the muon electron: its theoretical Compton radius rC = ħ/mμc ≈ 1.87 fm falls within the CODATA confidence interval for the experimentally determined charge radius.[11] Hence, the theory seems to offer a remarkably and intuitive model of leptons. However, the model cannot be generalized to non-leptonic fermions (spin-1/2 particles). Its application to protons or neutrons, for example, is problematic: when inserting the energy of a proton or a neutron into the formula for the Compton radius (the rC = ħ/mc formula follows from the kinematic model), we get a radius of the order of rC = ħ/mpc ≈ 0.21 fm, which is about 1/4 of the measured value (0.84184(67) fm to 0.897(18) fm). A radius of the order of 0.2 fm is also inconsistent with the presumed radius of the pointlike charge itself. Indeed, while the pointlike charge is supposed to be pointlike, pointlike needs to be interpreted as ‘having no internal structure’: it does not imply the pointlike charge has no (small) radius itself. The classical electron radius is a likely candidate for the radius of the pointlike charge because it emerges from low-energy (Thomson) scattering experiments (elastic scattering of photons, as opposed to inelastic Compton scattering). The assumption of a pointlike charge with radius re = α·ħ/mpc) may also offer a geometric explanation of the anomalous magnetic moment.[12]

In any case, the remarks above show that a Zitterbewegung model for non-leptonic fermions is likely to be somewhat problematic: a proton, for example, cannot be explained in terms of the Zitterbewegung of a positron (or a heavier variant of it, such as the muon- or tau-positron).[13] This is why it is generally assumed the large energy (and the small size) of nucleons is to be explained by another force – a strong force which acts on a strong charge instead of an electric charge. One should note that both color and/or flavor in the standard quarkgluon model of the strong force may be thought of as zero-mass charges in ‘mass without mass’ kinematic models and, hence, the acknowledgment of this problem does not generally lead zbw theorists to abandon the quest for an alternative realist interpretation of quantum mechanics.

While Hestenes‘ zbw interpretation (and the geometric calculus approach he developed) is elegant and attractive, he did not seem to have managed to convincingly explain an obvious question of critics of the model: what keeps the pointlike charge in the zbw electron in its circular orbit? To put it simply: one may think of the electron as a superconducting ring but there is no material ring to hold and guide the charge. Of course, one may argue that the electromotive force explains the motion but this raises the fine-tuning problem: the slightest deviation of the pointlike charge from its circular orbit would yield disequilibrium and, therefore, non-stability. [One should note the fine-tuning problem is also present in mainstream quantum mechanics. See, for example, the discussion in Feynman’s Lectures on Physics.] The lack of a convincing answer to these and other questions (e.g. on the distribution of (magnetic) energy within the superconducting ring) led several theorists working on electron models (e.g. Alexander Burinskii[14][15]) to move on and explore alternative geometric approaches, including Kerr-Newman geometries. Burinskii summarizes his model as follows: “The electron is a superconducting disk defined by an over-rotating black hole geometry. The charge emerges from the Möbius structure of the Kerr geometry.”[16] His advanced modelling of the electron also allows for a conceptual bridge with mainstream quantum mechanics, grand unification theories and string theory: “[…] Compatibility between gravity and quantum theory can be achieved without modifications of Einstein-Maxwell equations, by coupling to a supersymmetric Higgs model of symmetry breaking and forming a nonperturbative super-bag solution, which generates a gravity-free Compton zone necessary for consistent work of quantum theory. Super-bag is naturally upgraded to Wess-Zumino supersymmetric QED model, forming a bridge to perturbative formalism of conventional QED.”[17]

The various geometric approaches (Hestenes’ geometric calculus, Burinskii’s Kerr-Newman model, oscillator models) yield the same results (the intrinsic properties of the electron are derived from what may be referred to as kinematic equations or classical (but relativistically correct) equations) – except for a factor 2 or 1/2 or the inclusion (or not) of variable tuning parameters (Burinskii’s model, for example, allows for a variable geometry) – but the equivalence of the various models that may or may not explain the hypothetical Zitterbewegung still needs to be established.

The continued interest in zbw models may be explained because Zitterbewegung models – in particular Hestenes’ model and the oscillator model – are intuitive and, therefore, attractive. They are intuitive because they combine the Planck-Einstein relation (E = hf) and Einstein’s mass-energy equivalence (E = mc2): each cycle of the Zitterbewegung electron effectively packs (i) the unit of physical action (h) and (ii) the electron’s energy. This allows one to understand Planck’s quantum of action as the product of the electron’s energy and the cycle time: h = E·T = h·f·T = h·f/f = h. In addition, the idea of a centripetal force keeping some zero-mass pointlike charge in a circular orbit also offers a geometric explanation of Einstein’s mass-energy equivalence relation: this equation, therefore, is no longer a rather inexplicable consequence of special relativity theory.

The section below offers a general overview of the original discovery of Schrödinger and Dirac. It is followed by further analysis which may or may not help the reader to judge whether the Zitterbewegung hypothesis might, effectively, amount to what David Hestenes claims it actually is: an alternative interpretation of quantum mechanics.

Theory for a free fermion

[See the article: the author of this section does not seem to know – or does not mention, at least – that the Zitterbewegung hypothesis only applies to leptons (no strong charge).]

Experimental evidence

The Zitterbewegung may remain theoretical because, as Dirac notes, the frequency may be too high to be observable: it is the same frequency as that of a 0.511 MeV gamma-ray. However, some experiments may offer indirect evidence. Dirac’s reference to electron scattering experiments is also quite relevant because such experiments yield two radii: a radius for elastic scattering (the classical electron radius) and a radius for inelastic scattering (the Compton radius). Zittebewegung theorists think Compton scattering involves electron-photon interference: the energy of the high-energy photon (X- or gamma-ray photons) is briefly absorbed before the electron comes back to its equilibrium situation by emitting another (lower-energy) photon (the difference in the energy of the incoming and the outgoing photon gives the electron some extra momentum). Because of this presumed interference effect, Compton scattering is referred to as inelastic. In contrast, low-energy photons scatter elastically: they seem to bounce off some hard core inside of the electron (no interference).

Some experiments also claim they amount to a simulation of the Zitterbewegung of a free relativistic particle. First, with a trapped ion, by putting it in an environment such that the non-relativistic Schrödinger equation for the ion has the same mathematical form as the Dirac equation (although the physical situation is different).[18][19] Then, in 2013, it was simulated in a setup with Bose–Einstein condensates.[20]

The effective mass of the electric charge

The 2m factor in the formula for the zbw frequency and the interpretation of the Zitterbewegung in terms of a centripetal force acting on a pointlike charge with zero rest mass leads one to re-explore the concept of the effective mass of an electron. Indeed, if we write the effective mass of the pointlike charge as mγ = γm0 then we can derive its value from the angular momentum of the electron (L = ħ/2) using the general angular momentum formula L = r × p and equating r to the Compton radius:

This explains the 1/2 factor in the frequency formula for the Zitterbewegung. Substituting m for mγ in the ω = 2mc2/ħ yields an equivalence with the Planck-Einstein relation ω = mγc2/ħ. The electron can then be described as an oscillator (in two dimensions) whose natural frequency is given by the Planck-Einstein relation.[21]

The Emperor Has No Clothes

I am going to re-work my manuscript. I am going to restructure it, and also add the QCD analyses I did in recent posts. This is the first draft of the foreword. Let me know what you think of it. 🙂

[…] I had various working titles for this publication. I liked ‘A Bright Shining Lie’ but that title is already taken. The ‘History of a Bad Idea’ was another possibility, but my partner doesn’t like negative words. When I first talked to my new partner about my realist interpretation of quantum mechanics, she spontaneously referred to a story of that wonderful Danish storyteller, Hans Christian Andersen: The Emperor’s New Clothes. She was very surprised to hear I had actually produced a draft manuscript with the above-mentioned title (The Emperor Has No Clothes) on quantum electrodynamics which – after initially positive reactions – got turned down by two major publishers.[1] She advised me to stick to the original title and just give it another go. I might as well because the title is, obviously, also a bit of a naughty wink to one of Roger Penrose’s book.[2]

The ideas in this book are not all that easy to grasp – but they do amount to a full-blown realist interpretation of quantum mechanics, including both quantum electrodynamics (the theory of electrons and photons, and their interactions) and quantum chromodynamics – the theory of what goes on inside of a nucleus.[3] Where is gravity? And what about the weak force, and the new Higgs sector of what is commonly referred to as the Standard Model of physics? Don’t worry. We will talk about these too. Not to make any definite statements because we think science isn’t ready to make any definite statements about them. Why? Because we think it doesn’t make sense to analyze the weak force as a force. It’s just a different beast. Gravity is a different beast too: we will explore Einstein’s geometric interpretation of spacetime. As for the Higgs field, we think it is just an ugly placeholder in an equally ugly theory.

What ugly theory? Isn’t the Standard Model supposed to be beautiful? Sabine Hossenfelder[4] – writes the following about it in her latest book: “The Standard Model, despite its success, doesn’t get much love from physicists. Michio Kaku calls it “ugly and contrived,” Stephen Hawking says it’s “ugly and ad hoc,” Matt Strassler disparages it as “ugly and baroque,” Brian Greene complains that the standard model is “too flexible”, and Paul Davies thinks it “has the air of unfinished business” because “the tentative way in which it bundles together the electroweak and strong forces” is an “ugly feature.” I yet have to find someone who actually likes the standard model.”[5]

You may know Hossenfelder’s name. She recently highlighted work that doubts the rigor of the LIGO detections of gravitational waves.[6] I like it when scientists dare to question the award of a Nobel Prize. If any of what I write is true, then the Nobel Prize Committee has made a few premature awards over the past decades. Hossenfelder’s book explores the discontent with the Standard Model within the scientific community. Of course, the question is: what’s the alternative? That’s what this book is all about. You will be happy to hear that. You will be unhappy to hear that I am not to shy away from formulas and math. However, you should not worry: I am not going to pester you with gauge theory, renormalization, perturbation theory, transformations and what have you. Elementary high-school math is all you need. Reality is beautiful and complicated – but not that complicated: we can all understand it. 😊

[1] The pre-publication versions of this manuscript are date-stamped on http://vixra.org/abs/1901.0105.

[2] Roger Penrose, The Emperor’s New Mind, 1989.

[3] Physicists will note this is a rather limited definition of quantum chromodynamics. We will expand on it later.

[4] You may know her name. She recently highlighted work that doubs the rigor of the LIGO detections of gravitational waves. See: https://www.forbes.com/sites/startswithabang/2017/06/16/was-it-all-just-noise-independent-analysis-casts-doubt-on-ligos-detections. I like it when scientists dare to question a Nobel Prize. If any of what I write is true, then it’s obvious that it wouldn’t be the first time that the Nobel Prize Committee makes a premature award.

[5] Sabine Hossenfelder, Lost in Math: How Beauty Leads Physics Astray, 2018.

[6] See: https://www.forbes.com/sites/startswithabang/2017/06/16/was-it-all-just-noise-independent-analysis-casts-doubt-on-ligos-detections.

The virtuality of virtual particles

I’ve did what I promised to do – and that is to start posting on my other blog. On quantum chromodynamics, that is. But I think this paper deserves wider distribution. 🙂

The paper below probably sort of sums up my views on quantum field theory. I am not sure if I am going to continue to blog. I moved my papers to an academia.edu site and… Well… I think that’s about it. 🙂

0123456789p10p11p12