From my last post, which talks about movies and space travel, it is obvious I am in a rather meditative mood. Besides movies, I have also been watching Richard Feynman’s 1979 Auckland lectures (video link here) which were ultimately transcribed into what might well be Feynman’s most popular book: The Strange Theory of Light and Matter. I wrote quite a few posts on that (the link on the title will get you to one, or you can also use the search facility on this blog: just type ‘strange theory of light and matter’ and off you go).
In those posts, I do not argue with the story Feynman tells us about how QED ‘works’: I only try to show it is all far less mysterious than both he as well as the author of that little booklet make it out to be. Amplitudes and the coupling constant (which is nothing but the fine-structure constant) are not mysterious: we get them from Nature’s constants (the electron charge and its energy, basically), and then we just need to combine it with an idea of what photons actually are: lightparticles that carry the electromagnetic force. So QED is just electrodynamics but, yes, you need quantum theory because – at the smallest of scales – electromagnetic waves resolve into photons. Real photons. Not virtual ones.
The interesting thing about these lectures – which he gave in last decade of his life (he died in 1988, at a relatively young age) – is that Feynman also explains the basics of QCD: quantum chromodynamics. He explains quark flavors and colors in a rather lighthearted way. I wonder whether he truly believed the QCD theory was any good. We wrote a rather hard-hitting critique of it in our first paper on ResearchGate, in which I refer to the theory as ‘smoking gun physics’, my term for what Feynman referred to as ‘cargo cult science’: something “which has the semblance of science, but is only pseudoscience due to a lack of “a kind of scientific integrity, a principle of scientific thought that corresponds to a kind of utter honesty” on the part of the scientist.” My critique focused on what empirical evidence we actually have for the theory, and did not mention two more fundamental theoretical objections:
(1) the fact that Feynman’s ‘one-color’ parton model offer an equal number of ‘variables’ to explain what might be going on in the field of QCD (so the theory does not respect Occam’s Razor principle: alternative models are possible and the model must, therefore, have too many ‘degrees of freedom’); and
(2) those weird quark mass numbers: why would we ‘invent’ particles that have larger masses than the particles we are trying to explain?
I debunked quite a few ‘mysteries’ in Feynman’s presentations (e.g., his explanation of the boson-fermion dichotomy, or his explanation of 720-degree symmetries in quantum physics), so I think of him as a bit of a ‘mystery wallah‘ as well. Maybe I should bring it all together, one day. But I am not sure if I have the energy and time, and if people are actually still interested in it. We all seem to have more pressing worries now: that war in Ukraine is not good. We are all being misled on it.
That is probably why it makes me think scientists can be misled on a large scale too, which is why my qualification of the Standard Model of physics as ‘cargo cult science’ may now, perhaps, sound somewhat less offensive to those reading me here. 🙂
It has been ages since I last wrote something here. Regular work took over. I did do an effort, though, to synchronize and reorganize some stuff. And I am no longer shy about it. My stats on ResearchGate and academia.edu show that I am no longer a ‘crackpot theorist’. This is what I wrote about it on my LinkedIn account:
QUOTE
With good work-life balance now, I picked up one of my hobbies again: research into quantum theories. As for now, I only did a much-needed synchronization of papers on academia.edu and ResearchGate. When logging on the former network (which I had not done for quite a while), I found many friendly messages on it. One of them was from a researcher on enzymes: “I have been studying about these particles for around four years. All of the basics. But wat are they exactly? This though inspired me… Thank u so much!” I smiled and relaxed when I read that, telling myself that all those sleepless nights I spent on this were not the waste of time and energy that most of my friends thought it would be. 🙂
Another one was even more inspiring. It was written by another ‘independent’ researcher. Nelda Evans. No further detail in her profile. From the stats, I could see that she had downloaded an older manuscript of mine (https://lnkd.in/ecRKJwxQ). This is what she wrote about it to me: “I spoke to Richard Feynman in person at the Hughes Research Lab in Malibu California in 1967 where the first pulsed laser was invented when some of the students from the UCLA Physics Dept. went to hear him. Afterward I went to talk to him and said “Dr. Feynman, I’ve learned that some unknown scientists were dissatisfied with probability as a final description of Quantum Mechanics, namely Planck, Einstein, Schrodinger, de Broglie, Bohm,…” When I finished my list he immediately said “And Feynman”. We talked about it a little, and he told me “I like what you pick on.” My guess is that he might have told you something similar.”
That message touched me deeply, because I do feel – from reading his rather famous Lectures on Physics somewhat ‘between the lines’ – that Richard Feynman effectively knew all but that he, somehow, was not allowed to clearly say what it was all about. I wrote a few things about that rather strange historical bias in the interpretation of ‘uncertainty’ and other ‘metaphysical’ concepts that infiltrated the science of quantum mechanics in my last paper: https://lnkd.in/ewZBcfke.
So… Well… I am not a crackpot scientist anymore ! 🙂 The bottom-line is to always follow your instinct when trying to think clearly about some problem or some issue. We should do what Ludwig Boltzmann (1844-1906) told us to do: “Bring forward what is true. Write it so that it is clear. Defend it to your last breath.”
[…] Next ‘thing to do’, is to chat with ChatGPT about my rather straightforward theories. I want to see how ‘intelligent’ it is. I wonder where it will hit its limit in terms of ‘abstract thinking.’ The models I worked on combine advanced geometrical thinking (building ‘realistic’ particle models requires imagining ‘rotations within rotations’, among other things) and formal math (e.g. quaternion algebra). ChatGPT is excellent in both, I was told, but can it combine the two intelligently? 🙂
UNQUOTE
On we go. When the going gets tough, the tough get going. 🙂 For those who want an easy ‘introduction’ to the work (at a K-12 level of understanding of mathematics), I wrote the first pages of what could become a very new K-12 level textbook on physics. Let us see. I do want to see some interest from a publisher first. 🙂
I had not touched physics since April last year, as I was struggling with cancer, and finally went in for surgery. It solved the problem but physical and psychological recovery was slow, and so I was in no mood to work on mathematical and physical questions. Now I am going through my ResearchGate papers again. I start with those that get a fair amount of downloads and – I am very pleased to see that happen – those are the papers that deal with very fundamental questions, and lay out the core of an intuition that is more widely shared now: physicists are lost in contradictions and will not get out of this fuzzy situation until they solve them.
[Skeptical note here: I note that those physicists who bark loudest about the need for a scientific revolution are, unfortunately, often those who obscure things even more. For example, I quickly went through Hossenfelder’s Lost in Math (and I also emailed her to highlight all that zbw theory can bring) but she did not even bother to reply and, more in general, shows no signs of being willing to go back to the roots, which are the solutions that were presented during the early Solvay conferences but, because of some weird tweak of the history of science, and despite the warnings of intellectual giants such as H.A. Lorentz, Ehrenfest, or Einstein (and also Dirac or Bell in the latter half of their lifes), were discarded. I have come to the conclusion that modern-day scientists cannot be fashionable when admitting all mysteries have actually been solved long time ago.]
The key observation or contradiction is this: the formalism of modern quantum mechanics deals with all particles – stable or unstable – as point objects: they are supposed to have no internal structure. At the same time, a whole new range of what used to be thought of as intermediate mental constructs or temporary classifications – think of quarks here, or of the boson-fermion dichotomy – acquired ontological status. We lamented that in one of very first papers (titled: the difference between a theory, a calculation and an explanation), which has few formulas and is, therefore, a much easier read than the others.
Some of my posts on this blog here were far more scathing and, therefore, not suitable to write out in papers. See, for example, my Smoking Gun Physics post, in which I talk much more loudly (but also more unscientifically) about the ontologicalization of quarks and all these theoretical force-carrying particles that physicists have invented over the past 50 years or so.
My point of view is clear and unambiguous: photons and neutrinos (both of which can be observed and measured) will do. The rest (the analysis of decay and the chain of reactions after high-energy collisions, mainly) can be analyzed using scattering matrices and other classical techniques (on that, I did write a paper highlighting the proposals of more enlightened people than me, like Bombardelli, 2016, even if I think researchers like Bombardelli should push back to basics even more than they do). By the way, I should probably go much further in my photon and neutrino models, but time prevented me from doing so. In any case, I did update and put an older paper of mine online, with some added thoughts on recent experiments that seem to confirm neutrinos have some rest mass. That is only what is to be expected, I would think. Have a look at it.
[…]
This is a rather lengthy introduction to the topic I want to write about for my public here, which is people like you and me: (amateur) physicists who want to make sense of all that is out there. So I will make a small summary of an equation I was never interested in: Dirac’s wave equation. Why my lack of interest before, and my renewed interest now?
The reason is this: Feynman clearly never believed Dirac’s equation added anything to Schrödinger’s, because he does not even mention it in his rather Lectures which, I believe, are, today still, truly seminal even if they do not go into all of the stuff mainstream quantum physicists today believe to be true (which is, I repeat, all of the metaphysics around quarks and gluons and force-carrying bosons and all that). So I did not bother to dig into it.
However, when revising my paper on de Broglie’s matter-wave, I realized that I should have analyzed Dirac’s equation too, because I do analyze Schrödinger’s wave equation there (which makes sense), and also comment on the Klein-Gordon wave equation (which, just like Dirac’s, does not make much of an impression on me). Hence, I would say my renewed interest is only there because I wanted to tidy up a little corner in this kitchen of mine. 🙂
I will stop rambling now, and get on with it.
Dirac’s wave equation: concepts and issues
We should start by reminding ourselves what a wave equation actually is: it models how waves – sound waves, or electromagnetic waves, or – in this particular case – a ‘wavicle’ or wave-particle – propagate in space and in time. As such, it is often said they model the properties of the medium (think of properties such as elasticity, density, permittivity or permeability here) but, because we do no longer think of spacetime as an aether, quantum-mechanical wave equations are far more abstract.
I should insert a personal note here. I do have a personal opinion on the presumed reality of spacetime. It is not very solid, perhaps, because I oscillate between (1) Kant’s intuition, thinking that space and time are mental constructs only, which our mind uses to structure its impressions (we are talking science here, so I should say: our measurements) versus (2) the idea that the 2D or 3D oscillations of pointlike charges within, say, an electron, a proton or a muon-electron must involve some kind of elasticity of the ‘medium’ that we commonly refer to as spacetime (I’d say that is more in line with Wittgenstein’s philosophy of reality). I should look it up but I think I do talk about the elasticity of spacetime at one or two occasions in my papers that talk about internal forces in particles, or papers in which I dig deep into the potentials that may or may not drive these oscillations. I am not sure how far I go there. Probably too far. But if properties such as vacuum permittivity or permeability are generally accepted, then why not think of elasticity? However, I did try to remain very cautious when it comes to postulating properties of the so-called spacetime vacuum, as evidenced from what I write in one of the referenced papers above:
“Besides proving that the argument of the wavefunction is relativistically invariant, this [analysis of the argument of the wavefunction] also demonstrates the relativistic invariance of the Planck-Einstein relation when modelling elementary particles.[1] This is why we feel that the argument of the wavefunction (and the wavefunction itself) is more real – in a physical sense – than the various wave equations (Schrödinger, Dirac, or Klein-Gordon) for which it is some solution. In any case, a wave equation usually models the properties of the medium in which a wave propagates. We do not think the medium in which the matter-wave propagates is any different from the medium in which electromagnetic waves propagate. That medium is generally referred to as the vacuum and, whether or not you think of it as true nothingness or some medium, we think Maxwell’s equations – which establishes the speed of light as an absolute constant – model the properties of it sufficiently well! We, therefore, think superluminal phase velocities are not possible, which is why we think de Broglie’s conceptualization of a matter particle as a wavepacket – rather than one single wave – is erroneous.[2]“
The basic idea is this: if the vacuum is true nothingness, then it cannot have any properties, right? 🙂 That is why I call the spacetime vacuum, as it is being modelled in modern physics, a so-called vacuum. 🙂
[…] I guess I am rambling again, and so I should get back to the matter at hand, and quite literally so, because we are effectively talking about real-life matter here. To be precise, we are talking about Dirac’s view of an electron moving in free space. Let me add the following clarification, just to make sure we understand exactly what we are talking about: free space is space without any potential in it: no electromagnetic, gravitational or other fields you might think of.
In reality, such free space does not exist: it is just one of those idealizations which we need to model reality. All of real-life space – the Universe we live in, in other words – has potential energy in it: electromagnetic and/or gravitational potential energy (no other potential energy has been convincingly demonstrated so far, so I will not add to the confusion by suggesting there might be more). Hence, there is no such thing as free space.
What am I saying here? I am just saying that it is not bad that we remind ourselves of the fact that Dirac’s construction is theoretical from the outset. To me, it feels like trying to present electromagnetism by making full abstraction of the magnetic side of the electromagnetic force. That is all that I am saying here. Nothing more, nothing less. No offense to the greatness of a mind like Dirac’s.
[…] I may have lost you as a reader just now, so let me try to get you back: Dirac’s wave equation. Right. Dirac develops it in two rather dense sections of his Principles of Quantum Mechanics, which I will not try to summarize here. I want to make it easy for the reader, so I will limit myself to an analysis of the very first principle(s) which Dirac develops in his Nobel Prize Lecture. It is this (relativistically correct) energy equation:
E2 = m02c4 + p2c2
This equation may look unfamiliar to you but, frankly, if you are familiar with the basics of relativity theory, it should not come across as weird or unfathomable. It is one of the many basic ways of expressing relativity theory, as evidenced from the fact that Richard Feynman introduces this equation as part of his very first volume of his Lectures on Physics, and in one of the more basic chapters of it: just click on the link and work yourself through it: you will see it is just another rendering of Einstein’s mass-equivalence relation (E = mc2).
The point is this: it is very easy now to understand Dirac’s basic energy equation: the one he uses to then go from variables to quantum-mechanical operators and all of the other mathematically correct hocus-pocus that result in his wave equation. Just substitute E = mc2 for W, and then divide all by c2:
So here you are. All the rest is the usual hocus-pocus: we substitute classical variables by operators, and then we let them operate on a wavefunction (wave equations may or may not describe the medium, but wavefunctions surely do describe real-life particles), and then we have a complicated differential equation to solve and – as we made abundantly clear in this and other papers (one that you may want to read is my brief history of quantum-mechanical ideas, because I had a lot of fun writing that one, and it is not technical at all) – when you do that, you will find non-sensical solutions, except for the one that Schrödinger pointed out: the Zitterbewegung electron, which we believe corresponds to the real-life electron.
I will wrap this up (although you will say I have not done my job yet) by quoting quotes and comments from my de Broglie paper:
Prof. H. Pleijel, then Chairman of the Nobel Committee for Physics of the Royal Swedish Academy of Sciences, dutifully notes this rather inconvenient property in the ceremonial speech for the 1933 Nobel Prize, which was awarded to Heisenberg for nothing less than “the creation of quantum mechanics”[1]:
“Matter is formed or represented by a great number of this kind of waves which have somewhat different velocities of propagation and such phase that they combine at the point in question. Such a system of waves forms a crest which propagates itself with quite a different velocity from that of its component waves, this velocity being the so-called group velocity. Such a wave crest represents a material point which is thus either formed by it or connected with it, and is called a wave packet. […] As a result of this theory, one is forced to the conclusion to conceive of matter as not being durable, or that it can have definite extension in space. The waves, which form the matter, travel, in fact, with different velocity and must, therefore, sooner or later separate. Matter changes form and extent in space. The picture which has been created, of matter being composed of unchangeable particles, must be modified.”
This should sound very familiar to you. However, it is, obviously, not true: real-life particles – electrons or atoms traveling in space – do not dissipate. Matter may change form and extent in space a little bit – such as, for example, when we are forcing them through one or two slits[2] – but not fundamentally so![3]
We repeat again, in very plain language this time: Dirac’s wave equation is essentially useless, except for the fact that it actually models the electron itself. That is why only one of its solutions make sense, and that is the very trivial solution which Schrödinger pointed out: the Zitterbewegung electron, which we believe corresponds to the real-life electron. 🙂 It just goes through space and time like any ordinary particle would do, but its trajectory is not given by Dirac’s wave equation. In contrast, Schrödinger’s wave equation (with or without a potential being present: in free or non-free space, in other words) does the trick and – against mainstream theory – I dare say, after analysis of its origins, that it is relativistically correct. Its only drawback is that it does not incorporate the most essential property of an elementary particle: its spin. That is why it models electron pairs rather than individual electrons.
We can easily generalize to protons or other elementary or non-elementary particles. For a deeper discussion of Dirac’s wave equation (which is what you probably expected), I must refer, once again, to Annex II of my paper on the interpretation of de Broglie’s matter-wave: it is all there, really, and – glancing at it all once again – the math is actually quite basic. In any case, paraphrasing Euclid in his reply to King Ptolemy’s question, I would say that there is no royal road to quantum mechanics. One must go through its formalism and, far more important, its history of thought. 🙂
To conclude, I would like to return to one of the remarks I made in the introduction. What about the properties of the vacuum? I will remain cautious and, hence, not answer that question. I prefer to let you think about this rather primitive classification of what is relative and not, and how the equations in physics mix both of it. 🙂
[1] To be precise, Heisenberg got a postponed prize from 1932. Erwin Schrödinger and Paul A.M. Dirac jointly got the 1933 prize. Prof. Pleijel acknowledges all three in more or less equal terms in the introduction of his speech: “This year’s Nobel Prizes for Physics are dedicated to the new atomic physics. The prizes, which the Academy of Sciences has at its disposal, have namely been awarded to those men, Heisenberg, Schrödinger, and Dirac, who have created and developed the basic ideas of modern atomic physics.”
[2] The wave-particle duality of the ring current model should easily explain single-electron diffraction and interference (the electromagnetic oscillation which keeps the charge swirling would necessarily interfere with itself when being forced through one or two slits), but we have not had the time to engage in detailed research here.
[3] We will slightly nuance this statement later but we will not fundamentally alter it. We think of matter-particles as an electric charge in motion. Hence, as it acts on a charge, the nature of the centripetal force that keeps the particle together must be electromagnetic. Matter-particles, therefore, combine wave-particle duality. Of course, it makes a difference when this electromagnetic oscillation, and the electric charge, move through a slit or in free space. We will come back to this later. The point to note is: matter-particles do not dissipate. Feynman actually notes that at the very beginning of his Lectures on quantum mechanics, when describing the double-slit experiment for electrons: “Electrons always arrive in identical lumps.”
[1] The relativistic invariance of the Planck-Einstein relation emerges from other problems, of course. However, we see the added value of the model here in providing a geometric interpretation: the Planck-Einstein relation effectively models the integrity of a particle here.
When I wrote my first PS in November last year, I thought it would be my last blog post here – but the stats keep going up. Good enough here on WordPress, and even better on ResearchGate: a 170+ score now and still rising fast: top 1% climber still – despite that I have published nothing since a year now – which got me into the top 25% bracket of RG researchers in less than two years – and, while it is far from going viral, further rise looks a bit inevitable now.
It clearly shows that I am not mad and that you are reading serious physics here – but without the usual hocus-pocus and ‘mystery’ that leaves so many young and-not-so-young people disgusted. I repeat: there is no serious puzzle in physics any more. All that is being done now, is to further work out the consequences of the fundamental laws of physics that were written down about a hundred years ago (de Broglie wrote his thesis in 1924, so this centenary is almost there). For those who are seeking to simplify further by resorting to some kind of ‘meta-symbolism’ or an even more ‘holistic’ perspective (whatever that might mean), I think the exchange below (from my ResearchGate account) might be useful. For the rest, I have nothing to add anymore. It is all there ! 🙂
M (7 days ago): Dear JL – I was amazed to find your piece on the jitter-bugging phenomena [sic] (not hypothesis). I think you may find my more holistic perspective useful in fine-tuning your work. I hope you agree, and I would love to collaborate. After all, as far as I know, your work is the first substantive effort in nearly 60 years+ (in this very fertile direction). Cheers, etc. ~ M
M (7 days ago): Dear JL – Bravo!!! I just saw the abstract of your paper on conserving the enthusiasm of young people afflicted by modern SM-QM nonsense, dogma, etc. I am now even more motivated to have your help reviewing, editing, and developing my next-gen ontology of the cosmos. Cheers ~ M
My rapid-fire answers (yesterday and today):
Txs man ! This developed partly because (1) I had too much time on my hands (a difficult past five years as I came back from abroad and my mom and bro died from cancer – I had to go through cancer surgery myself) and (2) helping my son getting through his exams on quantum physics as part of his engineering studies (he is just as much as a rebel as me and (also) wanted more ‘common-sense’ explanations. The ‘orbital’ or ‘circular’ motion concept for interpreting de Broglie’s wavefunction (orbital frequencies instead of linear ones) is the key to everything. 🙂 No magic. 🙂 Charge and motion are the only concepts that are real. 🙂 There is no copyright to what I produced (a lot is just about building further on strands the ‘Old Great’ (including Schroedinger himself) had in mind) so feel free to use it and further develop. My blog post on Paul Ehrenfest’ s suicide is probably still the most ‘accessible’ introduction to it all. It is also tragic – as tragic (or more, probably) as Dirac’s depression when he sort of ‘turned his back’ on the young wolves he used to support – but still… https://readingfeynman.org/2020/05/27/ehrenfest-and-other-tragedies-in-physics/
[…]
I also did some YouTube videos to ‘market’ it all – but there is only so much one can do. It is a weird situation. APS, WSP and even Springer Verlag wanted to do something with me but they all backed off in the end. Fortunately I do not suffer from much ego (one advantage of my experience in war-torn countries such as Afghanistan and in Ukraine (March)) – so I take everything lightly. My “Post Scriptum” to my papers – https://www.researchgate.net/publication/356556508_Post_Scriptum – is a read of 15 minutes only and guides all of the material. Have fun with it ! Life is short. I know – having come clean out of cancer (unlike my mom and my bro), so every day is a perfect day now. As for day job: https://www.linkedin.com/in/jean-louis-van-belle-85b74b7a/
[…]
As for the formalism that you are introducing, I would recommend close(r) study of: (1) https://en.wikipedia.org/wiki/Geometrodynamics : my physics is a ‘mass without mass’ approach – but I do not believe charge can be further reduced (we need the concept to distinguish between matter and anti-matter, for example – geometry does not suffice to explain all degrees of freedom there); (2) The failure of Wittgenstein’s formalism – as he admitted himself in what is commonly referred to as the ‘Wittgenstein II’ (nothing more than some of his comments in letters on his little booklet). I studied Wittgenstein as part of my philosophy studies and I am not too impressed. I feel we need a bit of ‘common’ language to add nuance and meaning to the mathematical symbols. Without the ambiguity in them, they do not mean all that much to me. Also see: https://en.wikipedia.org/wiki/Ordinary_language_philosophy
[…]
To add – I also believe step (3) of the geometrodynamics is not possible. We can do without the mass concept (and still it is useful to use in the higher-level physics), but not without charge or fields. Charge and field are not further reducible. The last slide of my ‘philosophy and physics’ presentation on YouTube shows the fundamental ‘categories’ I believe in (categories in an Aristotelian sense). These concepts can be both ‘relative’ or ‘absolute’ (not-relative, in the sense of (special/general) relativity theory). https://www.youtube.com/watch?v=sJxAh_uCNjs&t=16s
One more thing, despite my criticism on ‘Wittgenstein-like’ formalism, his first statement in his Tractatus should obviously be the point of departure of any ‘metaphysics’ or epistemology: 1.1 Die Welt ist die Gesamtheit der Tatsachen, nicht der Dinge. Perhaps it is the only thing we can seriously say about ‘the world’ or ‘reality’. It serves as a ‘good enough’ definition to me, in any case. 🙂
After a long break (more than six months), I have started to engage again in a few conversations. I also looked at the 29 papers on my ResearchGate page, and I realize some of them would need to be re-written or re-packaged so as to ensure a good flow. Also, some of the approaches were more productive than others (some did not lead anywhere at all, actually), and I would need to point those out. I have been thinking about how to approach this, and I think I am going to produce an annotated version of these papers, with comments and corrections as mark-ups. Re-writing or re-structuring all of them would require to much work.
The mark-up of those papers is probably going to be based on some ‘quick-fire’ remarks (a succession of thoughts triggered by one and the same question) which come out of the conversation below, so I thank these thinkers for having kept me in the loop of a discussion I had followed but not reacted to. It is an interesting one – on the question of ‘deep electron orbitals’ (read: the orbitals of negative charge inside of a nucleus exist and, if so, how one can model them. If one could solve that question, one would have a theoretical basis for what is referred to as low-energy nuclear reactions. That was known formerly as cold fusion, but that got a bit of a bad name because of a number of crooks spoiling the field, unfortunately.
PS: I leave the family names of my correspondents in the exchange below out so they cannot be bothered. One of them, Jerry, is a former American researcher at SLAC. Andrew – the key researcher on DEPs – is a Canadian astrophysicist, and the third one – Jean-Luc – is a rather prominent French scientist in LENR.]
From: Jean Louis Van Belle Sent: 18 November 2021 22:51 Subject: Staying engaged (5)
Oh – and needless to say, Dirac’s basic equation can, of course, be expanded using the binomial expansion – just like the relativistic energy-momentum relation, and then one can ‘cut off’ the third-, fourth-, etc-order terms and keep the first and second-order terms only. Perhaps it is equations like that kept you puzzled (I should check your original emails). In any case, this way of going about energy equations for elementary particles is a bit the same as those used in perturbation equations in which – as Dirac complained – one randomly selects terms that seem to make sense and discard others because they do not seem to make sense. Of course, Dirac criticized perturbation theory much more severely than this – and rightly so. 😊 😊 JL
From: Jean Louis Van Belle Sent: 18 November 2021 22:10 Subject: Staying engaged (4)
Also – I remember you had some questions on an energy equation – not sure which one – but so I found Dirac’s basic equation (based on which he derives the ‘Dirac’ wave equation) is essentially useless because it incorporates linear momentum only. As such, it repeats de Broglie’s mistake, and that is to interpret the ‘de Broglie’ wavelength as something linear. It is not: frequencies, wavelengths are orbital frequencies and orbital circumferences. So anything you would want to do with energy equations that are based on that, lead nowhere – in my not-so-humble opinion, of course. To illustrate the point, compare the relativistic energy-momentum relation and Dirac’s basic equation in his Nobel Prize lecture (I hope the subscripts/superscripts get through your email system so they display correctly):
Divide the above by c2 and re-arrange and you get Dirac’s equation: W2/c2 – pr2 – m2/c2 = 0 (see his 1933 Nobel Prize Lecture)
So that cannot lead anywhere. It’s why I totally discard Dirac’s wave equation (it has never yielded any practical explanation of a real-life phenomenon anyway, if I am not mistaken).
Cheers – JL
From: Jean Louis Van Belle Sent: 18 November 2021 21:49 Subject: Staying engaged (3)
Just on ‘retarded sources’ and ‘retarded fields’ – I have actually tried to think of the ‘force mechanism’ inside of an electron or a proton (what keeps the pointlike charge in this geometric orbit around a center of mass?). I thought long and hard about some kind of model in which we have the charge radiate out a sub-Planck field, and that its ‘retarded effects’ might arrive ‘just in time’ to the other side of the orbital (or whatever other point on the orbital) so as to produce the desired ‘course correction’ might explain it. I discarded it completely: I am now just happy that we have ‘reduced’ the mystery to this ‘Planck-scale quantum-mechanical oscillation’ (in 2D or 3D orbitals) without the need for an ‘aether’, or quantized spacetime, or ‘virtual particles’ actually ‘holding the thing together’.
Also, a description in terms of four-vectors (scalar and vector potential) does not immediately call for ‘retarded time’ variables and all that, so that is another reason why I think one should somehow make the jump from E-B fields to scalar and vector potential, even if the math is hard to visualize. If we want to ‘visualize’ things, Feynman’s discussion of the ‘energy’ and ‘momentum’ flow in https://www.feynmanlectures.caltech.edu/II_27.html might make sense, because I think analyses in terms of Poynting vectors are relativistically current, aren’t they? It is just an intuitive idea…
Cheers – JL
From: Jean Louis Van Belle Sent: 18 November 2021 21:28 Subject: Staying engaged (2)
But so – in the shorter run – say, the next three-six months, I want to sort out those papers on ResearchGate. The one on the de Broglie’s matter-wave (interpreting the de Broglie wavelength as the circumference of a loop rather than as a linear wavelength) is the one that gets most downloads, and rightly so. The rest is a bit of a mess – mixing all kinds of things I tried, some of which worked, but other things did not. So I want to ‘clean’ that up… 😊 JL
From: Jean Louis Van Belle Sent: 18 November 2021 21:21 Subject: Staying engaged…
Please do include me in the exchanges, Andrew – even if I do not react, I do read them because I do need some temptation and distraction. As mentioned, I wanted to focus on building a credible n = p + e model (for free neutrons but probably more focused on a Schrodinger-like D = p + e + p Platzwechsel model, because the deuteron nucleus is stable). But so I will not do that the way I studied the zbw model of the electron and proton (I believe that is sound now) – so that’s with not putting in enough sleep. I want to do it slowly now. I find a lot of satisfaction in the fact that I think there is no need for complicated quantum field theories (fields are quantized, but in a rather obvious way: field oscillations – just like matter-particles – pack Planck’s quantum of (physical) action which – depending on whether you freeze time or positions as a variable, expresses itself as a discrete amount of energy or, alternatively, as a discrete amount of momentum), nor is there any need for this ‘ontologization’ of virtual field interactions (sub-Planck scale) – the quark-gluon nonsense.
Also, it makes sense to distinguish between an electromagnetic and a ‘strong’ or ‘nuclear’ force: the electron and proton have different form factors (2D versus 3D oscillations, but that is a bit of a non-relativistic shorthand for what might be the case) but, in addition, there is clearly a much stronger force at play within the proton – whose strength is the same kind of ‘scale’ as the force that gives the muon-electron its rather enormous mass. So that is my ‘belief’ and the ‘heuristic’ models I build (a bit of ‘numerology’ according to Dr Pohl’s rather off-hand remarks) support it sufficiently for me to make me feel at peace about all these ‘Big Questions’.
I am also happy I figured out these inconsistencies around 720-degree symmetries (just the result of a non-rigorous application of Occam’s Razor: if you use all possible ‘signs’ in the wavefunction, then the wavefunction may represent matter as well as anti-matter particles, and these 720-degree weirdness dissolves). Finally, the kind of ‘renewed’ S-matrix programme for analyzing unstable particles (adding a transient factor to wavefunctions) makes sense to me, but even the easiest set of equations look impossible to solve – so I may want to dig into the math of that if I feel like having endless amounts of time and energy (which I do not – but, after this cancer surgery, I know I will only die on some ‘moral’ or ‘mental’ battlefield twenty or thirty years from now – so I am optimistic).
So, in short, the DEP question does intrigue me – and you should keep me posted, but I will only look at it to see if it can help me on that deuteron model. 😊 That is the only ‘deep electron orbital’ I actually believe in. Sorry for the latter note.
Cheers – JL
From: Andrew Sent: 16 November 2021 19:05 To: Jean-Luc; Jerry; Jean Louis Subject: Re: retarded potential?
Dear Jean-Louis,
Congratulations on your new position. I understand your present limitations, despite your incredible ability to be productive. They must be even worse than those imposed by my young kids and my age. Do you wish for us to not include you in our exchanges on our topic? Even with no expectation of your contributing at this point, such emails might be an unwanted temptation and distraction.
Dear Jean-Luc,
Thank you for the Wiki-Links. They are useful. I agree that the 4-vector potential should be considered. Since I am now considering the nuclear potentials as well as the deep orbits, it makes sense to consider the nuclear vector potentials to have an origin in the relativistic Coulomb potentials. I am facing this in my attempts to calculate the deep orbits from contributions to the potential energies that have a vector component, which non-rel Coulomb potentials do not have.
For examples: do we include the losses in Vcb (e.g., from the binding energy BE) when we make the relativistic correction to the potential; or, how do we relativistically treat pseudo potentials such as that of centrifugal force? We know that for equilibrium, the average forces must cancel. However, I’m not sure that it is possible to write out a proper expression for “A” to fit such cases.
Best regards to all,
Andrew
_ _ _
On Fri, Nov 12, 2021 at 1:42 PM Jean-Luc wrote:
Dear all,
I totally agree with the sentence of Jean-Louis, which I put in bold in his message, about vector potential and scalar potential, combined into a 4-vector potential A, for representing EM field in covariant formulation. So EM representation by 4-vector A has been very developed, as wished by JL, in the framework of QED.
We can see the reality of vector potential in the Aharonov-Bohm effect: https://en.wikipedia.org/wiki/Aharonov-Bohm_effect. In fact, we can see that vector potential contains more information than E,B fields. Best regards
Jean-Luc Le 12/11/2021 à 05:43, Jean Louis Van Belle a écrit :
Hi All – I’ve been absent in the discussion, and will remain absent for a while. I’ve been juggling a lot of work – my regular job at the Ministry of Interior (I got an internal promotion/transfer, and am working now on police and security sector reform) plus consultancies on upcoming projects in Nepal. In addition, I am still recovering from my surgery – I got a bad flue (not C19, fortunately) and it set back my auto-immune system, I feel. I have a bit of a holiday break now (combining the public holidays of 11 and 15 November in Belgium with some days off to bridge so I have a rather nice super-long weekend – three in one, so to speak).
As for this thread, I feel like it is not ‘phrasing’ the discussion in the right ‘language’. Thinking of E-fields and retarded potential is thinking in terms of 3D potential, separating out space and time variables without using the ‘power’ of four-vectors (four-vector potential, and four-vector space-time). It is important to remind ourselves that we are measuring fields in continuous space and time (but, again, this is relativistic space-time – so us visualizing a 3D potential at some point in space is what it is: we visualize something because our mind needs that – wants that). The fields are discrete, however: a field oscillation packs one unit of Planck – always – and Planck’s quantum of action combines energy and momentum: we should not think of energy and momentum as truly ‘separate’ (discrete) variables, just like we should not think of space and time as truly ‘separate’ (continuous) variables.
I do not quite know what I want to say here – or how I should further work it out. I am going to re-read my papers. I think I should further develop the last one (https://www.researchgate.net/publication/351097421_The_concepts_of_charge_elementary_ring_currents_potential_potential_energy_and_field_oscillations), in which I write that the vector potential is more real than the electric field and the scalar potential should be further developed, and probably it is the combined scalar and vector potential that are the ’real’ things. Not the electric and magnetic field. Hence, illustrations like below – in terms of discs and cones in space – do probably not go all that far in terms of ‘understanding’ what it is going on… It’s just an intuition…
Cheers – JL
From: Andrew Sent: 23 September 2021 17:17 To: Jean-Luc; Jerry; Jean Louis Subject: retarded potential?
Dear Jean-Luc,
Becasue of the claim that gluons are tubal, I have been looking at the disk-shaped E-field lines of the highly-relativistic electron and comparing it to the retarded potential, which, based on timing, would seem to give a cone rather than a disk (see figure). This makes a difference when we consider a deep-orbiting electron. It even impacts selection of the model for impact of an electron when considering diffraction and interference.
Even if the field appears to be spreading out as a cone, the direction of the field lines are that of a disk from the retarded source. However, how does it interact with the radial field of a stationary charge?
Do you have any thoughts on the matter.
Best regards,
Andrew
_ _ _
On Thu, Sep 23, 2021 at 5:05 AM Jean-Luc wrote:
Dear Andrew, Thank you for the references. Best regards, Jean-Luc
Le 18/09/2021 à 17:32, Andrew a écrit : > This might have useful thoughts concerning the question of radiation > decay to/from EDOs. > > Quantum Optics Electrons see the quantum nature of light > Ian S. Osborne > We know that light is both a wave and a particle, and this duality > arises from the classical and quantum nature of electromagnetic > excitations. Dahan et al. observed that all experiments to date in > which light interacts with free electrons have been described with > light considered as a wave (see the Perspective by Carbone). The > authors present experimental evidence revealing the quantum nature of > the interaction between photons and free electrons. They combine an > ultrafast transmission electron microscope with a silicon-photonic > nanostructure that confines and strengthens the interaction between > the light and the electrons. The “quantum” statistics of the photons > are imprints onto the propagating electrons and are seen directly in > their energy spectrum. > Science, abj7128, this issue p. 1324; see also abl6366, p. 1309
I wrote a lot of papers but most of them – if not all – deal with very basic stuff: the meaning of uncertainty (just statistical indeterminacy because we have no information on the initial condition of the system), the Planck-Einstein relation (how Planck’s quantum of action models an elementary cycle or an oscillation), and Schrödinger’s wavefunctions (the solutions to his equation) as the equations of motion for a pointlike charge. If anything, I hope I managed to restore a feeling that quantum electrodynamics is not essentially different from classical physics: it just adds the element of a quantization – of energy, momentum, magnetic flux, etcetera.
Importantly, we also talked about what photons and electrons actually are, and that electrons are pointlike but not dimensionless: their magnetic moment results from an internal current and, hence, spin is something real – something we can explain in terms of a two-dimensional perpetual current. In the process, we also explained why electrons take up some space: they have a radius (the Compton radius). So that explains the quantization of space, if you want.
We also talked fields and told you – because matter-particles do have a structure – we should have a dynamic view of the fields surrounding those. Potential barriers – or their corollary: potential wells – should, therefore, not be thought of as static fields. They result from one or more charges moving around and these fields, therefore, vary in time. Hence, a particle breaking through a ‘potential wall’ or coming out of a potential ‘well’ is just using an opening, so to speak, which corresponds to a classical trajectory.
We, therefore, have the guts to say that some of what you will read in a standard textbook is plain nonsense. Richard Feynman, for example, starts his lecture on a current in a crystal lattice by writing this: “You would think that a low-energy electron would have great difficulty passing through a solid crystal. The atoms are packed together with their centers only a few angstroms apart, and the effective diameter of the atom for electron scattering is roughly an angstrom or so. That is, the atoms are large, relative to their spacing, so that you would expect the mean free path between collisions to be of the order of a few angstroms—which is practically nothing. You would expect the electron to bump into one atom or another almost immediately. Nevertheless, it is a ubiquitous phenomenon of nature that if the lattice is perfect, the electrons are able to travel through the crystal smoothly and easily—almost as if they were in a vacuum. This strange fact is what lets metals conduct electricity so easily; it has also permitted the development of many practical devices. It is, for instance, what makes it possible for a transistor to imitate the radio tube. In a radio tube electrons move freely through a vacuum, while in the transistor they move freely through a crystal lattice.” [The italics are mine.]
It is nonsense because it is not the electron that is traveling smoothly, easily or freely: it is the electrical signal, and – no ! – that is not to be equated with the quantum-mechanical amplitude. The quantum-mechanical amplitude is just a mathematical concept: it does not travel through the lattice in any physical sense ! In fact, it does not even travel through the lattice in a logical sense: the quantum-mechanical amplitudes are to be associated with the atoms in the crystal lattice, and describe their state – i.e. whether or not they have an extra electron or (if we are analyzing electron holes in the lattice) if they are lacking one. So the drift velocity of the electron is actually very low, and the way the signal moves through the lattice is just like in the game of musical chairs – but with the chairs on a line: all players agree to kindly move to the next chair for the new arrival so the last person on the last chair can leave the game to get a beer. So here it is the same: one extra electron causes all other electrons to move. [For more detail, we refer to our paper on matter-waves, amplitudes and signals.]
But so, yes, we have not said much about semiconductors, lasers and other technical stuff. Why not? Not because it should be difficult: we already cracked the more difficult stuff (think of an explanation of the anomalous magnetic moment, the Lamb shift, or one-photon Mach-Zehnder interference here). No. We are just lacking time ! It is, effectively, going to be an awful lot of work to rewrite those basic lectures on semiconductors – or on lasers or other technical matters which attract students in physics – so as to show why and how the mechanics of these things actually work: not approximately, but how exactly – and, more importantly, why and how these phenomena can be explained in terms of something real: actual electrons moving through the lattice at lower or higher drift speeds within a conduction band (and then what that conduction band actually is).
The same goes for lasers: we talk about induced emission and all that, but we need to explain what that might actually represent – while avoiding the usual mumbo-jumbo about bosonic behavior and other useless generalizations of properties of actually matter- and light-particles that can be reasonably explained in terms of the structure of these particles – instead of invoking quantum-mechanical theorems or other dogmatic or canonical a priori assumptions.
So, yes, it is going to be hard work – and I am not quite sure if I have sufficient time or energy for it. I will try, and so I will probably be offline for quite some time while doing that. Be sure to have fun in the meanwhile ! 🙂
Post scriptum: Perhaps I should also focus on converting some of my papers into journal articles, but then I don’t feel like it’s worth going through all of the trouble that takes. Academic publishing is a weird thing. Either the editorial line of the journal is very strong, in which case they do not want to publish non-mainstream theory, and also insist on introductions and other credentials, or, else, it is very weak or even absent – and then it is nothing more than vanity or ego, right? So I think I am just fine with the viXra collection and the ‘preprint’ papers on ResearchGate now. I’ve been thinking it allows me to write what I want and – equally important – how I want to write it. In any case, I am writing for people like you and me. Not so much for dogmatic academics or philosophers. The poor experience with reviewers of my manuscript has taught me well, I guess. I should probably wait to get an invitation to publish now.
A few days ago, I mentioned I felt like writing a new book: a sort of guidebook for amateur physicists like me. I realized that is actually fairly easy to do. I have three very basic papers – one on particles (both light and matter), one on fields, and one on the quantum-mechanical toolbox (amplitude math and all of that). But then there is a lot of nitty-gritty to be written about the technical stuff, of course: self-interference, superconductors, the behavior of semiconductors (as used in transistors), lasers, and so many other things – and all of the math that comes with it. However, for that, I can refer you to Feynman’s three volumes of lectures, of course. In fact, I should: it’s all there. So… Well… That’s it, then. I am done with the QED sector. Here is my summary of it all (links to the papers on Phil Gibbs’ site):
The last paper is interesting because it shows statistical indeterminism is the only real indeterminism. We can, therefore, use Bell’s Theorem to prove our theory is complete: there is no need for hidden variables, so why should we bother about trying to prove or disprove they can or cannot exist?
Jean Louis Van Belle, 21 October 2020
Note: As for the QCD sector, that is a mess. We might have to wait another hundred years or so to see the smoke clear up there. Or, who knows, perhaps some visiting alien(s) will come and give us a decent alternative for the quark hypothesis and quantum field theories. One of my friends thinks so. Perhaps I should trust him more. 🙂
As for Phil Gibbs, I should really thank him for being one of the smartest people on Earth – and for his site, of course. Brilliant forum. Does what Feynman wanted everyone to do: look at the facts, and think for yourself. 🙂
I ended my post on particles as spacetime oscillations saying I should probably write something about the concept of a field too, and why and how many academic physicists abuse it so often. So I did that, but it became a rather lengthy paper, and so I will refer you to Phil Gibbs’ site, where I post such stuff. Here is the link. Let me know what you think of it.
As for how it fits in with the rest of my writing, I already jokingly rewrote two of Feynman’s introductory Lectures on quantum mechanics (see: Quantum Behavior and Probability Amplitudes). I consider this paper to be the third. 🙂
Post scriptum: Now that I am talking about Richard Feynman – again ! – I should add that I really think of him as a weird character. I think he himself got caught in that image of the ‘Great Teacher’ while, at the same (and, surely, as a Nobel laureate), he also had to be seen to a ‘Great Guru.’ Read: a Great Promoter of the ‘Grand Mystery of Quantum Mechanics’ – while he probably knew classical electromagnetism combined with the Planck-Einstein relation can explain it all… Indeed, his lecture on superconductivity starts off as an incoherent ensemble of ‘rocket science’ pieces, to then – in the very last paragraphs – manipulate Schrödinger’s equation (and a few others) to show superconducting currents are just what you would expect in a superconducting fluid. Let me quote him:
“Schrödinger’s equation for the electron pairs in a superconductor gives us the equations of motion of an electrically charged ideal fluid. Superconductivity is the same as the problem of the hydrodynamics of a charged liquid. If you want to solve any problem about superconductors you take these equations for the fluid [or the equivalent pair, Eqs. (21.32) and (21.33)], and combine them with Maxwell’s equations to get the fields.”
So… Well… Looks he too is all about impressing people with ‘rocket science models’ first, and then he simplifies it all to… Well… Something simple. 😊
Having said that, I still like Feynman more than modern science gurus, because the latter usually don’t get to the simplifying part.
I don’t know where I would start a new story on physics. I am also not quite sure for whom I would be writing it – although it would be for people like me, obviously: most of what we do, we do for ourselves, right? So I should probably describe myself in order to describe the audience: amateur physicists who are interested in the epistemology of modern physics – or its ontology, or its metaphysics. I also talk about the genealogy or archaeology of ideas on my ResearchGate site. All these words have (slightly) different meanings but the distinctions do not matter all that much. The point is this: I write for people who want to understand physics in pretty much the same way as the great classical physicist Hendrik Antoon Lorentz who, just a few months before his demise, at the occasion of the (in)famous 1927 Solvay Conference, wanted to understand the ‘new theories’:
“We are representing phenomena. We try to form an image of them in our mind. Till now, we always tried to do using the ordinary notions of space and time. These notions may be innate; they result, in any case, from our personal experience, from our daily observations. To me, these notions are clear, and I admit I am not able to have any idea about physics without those notions. The image I want to have when thinking physical phenomena has to be clear and well defined, and it seems to me that cannot be done without these notions of a system defined in space and in time.”
Note that H.A. Lorentz understood electromagnetism and relativity theory as few others did. In fact, judging from some of the crap out there, I can safely say he understood stuff as few others do today still. Hence, he should surely not be thought of as a classical physicist who, somehow, was stuck. On the contrary: he understood the ‘new theories’ better than many of the new theorists themselves. In fact, as far as I am concerned, I think his comments or conclusions on the epistemological status of the Uncertainty Principle – which he made in the same intervention – still stand. Let me quote the original French:
“Je pense que cette notion de probabilité [in the new theories] serait à mettre à la fin, et comme conclusion, des considérations théoriques, et non pas comme axiome a priori, quoique je veuille bien admettre que cette indétermination correspond aux possibilités expérimentales. Je pourrais toujours garder ma foi déterministe pour les phénomènes fondamentaux, dont je n’ai pas parlé. Est-ce qu’un esprit plus profond ne pourrait pas se rendre compte des mouvements de ces électrons. Ne pourrait-on pas garder le déterminisme en en faisant l’objet d’une croyance? Faut-il nécessairement ériger l’ indéterminisme en principe?”
What a beautiful statement, isn’t it? Why should we elevate indeterminism to a philosophical principle? Indeed, now that I’ve inserted some French, I may as well inject some German. The idea of a particle includes the idea of a more or less well-known position. Let us be specific and think of uncertainty in the context of position. We may not fully know the position of a particle for one or more of the following reasons:
The precision of our measurements may be limited: this is what Heisenberg referred to as an Ungenauigkeit.
Our measurement might disturb the position and, as such, cause the information to get lost and, as a result, introduce an uncertainty: this is what we may translate as an Unbestimmtheit.
The uncertainty may be inherent to Nature, in which case we should probably refer to it as an Ungewissheit.
So what is the case? Lorentz claims it is either the first or the second – or a combination of both – and that the third proposition is a philosophical statement which we can neither prove nor disprove. I cannot see anything logical (theory) or practical (experiment) that would invalidate this point. I, therefore, intend to write a basic book on quantum physics from what I hope would be Lorentz’ or Einstein’s point of view.
My detractors will immediately cry wolf: Einstein lost the discussions with Bohr, didn’t he? I do not think so: he just got tired of them. I want to try to pick up the story where he left it. Let’s see where I get. 🙂
I’ve been asked a couple of times: “What about Bell’s No-Go Theorem, which tells us there are no hidden variables that can explain quantum-mechanical interference in some kind of classical way?” My answer to that question is quite arrogant, because it’s the answer Albert Einstein would give when younger physicists would point out that his objections to quantum mechanics (which he usually expressed as some new thought experiment) violated this or that axiom or theorem in quantum mechanics: “Das ist mir wur(sch)t.”
In English: I don’t care. Einstein never lost the discussions with Heisenberg or Bohr: he just got tired of them. Like Einstein, I don’t care either – because Bell’s Theorem is what it is: a mathematical theorem. Hence, it respects the GIGO principle: garbage in, garbage out. In fact, John Stewart Bell himself – one of the third-generation physicists, we may say – had always hoped that some “radical conceptual renewal”[1] might disprove his conclusions. We should also remember Bell kept exploring alternative theories – including Bohm’s pilot wave theory, which is a hidden variables theory – until his death at a relatively young age. [J.S. Bell died from a cerebral hemorrhage in 1990 – the year he was nominated for the Nobel Prize in Physics. He was just 62 years old then.]
So I never really explored Bell’s Theorem. I was, therefore, very happy to get an email from Gerard van der Ham, who seems to have the necessary courage and perseverance to research this question in much more depth and, yes, relate it to a (local) realist interpretation of quantum mechanics. I actually still need to study his papers, and analyze the YouTube video he made (which looks much more professional than my videos), but this is promising.
To be frank, I got tired of all of these discussions – just like Einstein, I guess. The difference between realist interpretations of quantum mechanics and the Copenhagen dogmas is just a factor 2 or π in the formulas, and Richard Feynman famously said we should not care about such factors (Feynman’s Lectures, III-2-4). Modern physicists fudge them away consistently. They’ve done much worse than that, actually. They are not interested in truth. Convention, dogma, indoctrination – – non-scientific historical stuff – seems to prevent them from that. And modern science gurus – the likes of Sean Carroll or Sabine Hossenfelder etc. – play the age-old game of being interesting: they pretend to know something you do not know or – if they don’t – that they are close to getting the answers. They are not. They have them already. They just don’t want to tell you that because, yes, it’s the end of physics.
[1] See: John Stewart Bell, Speakable and unspeakable in quantum mechanics, pp. 169–172, Cambridge University Press, 1987.
I have a crazy new idea: a complete re-write of Feynman’s Lectures. It would be fun, wouldn’t it? I would follow the same structure—but start with Volume III, of course: the lectures on quantum mechanics. We could even re-use some language—although we’d need to be careful so as to keep Mr. Michael Gottlieb happy, of course. 🙂 What would you think of the following draft Preface, for example?
The special problem we try to get at with these lectures is to maintain the interest of the very enthusiastic and rather smart people trying to understand physics. They have heard a lot about how interesting and exciting physics is—the theory of relativity, quantum mechanics, and other modern ideas—and spend many years studying textbooks or following online courses. Many are discouraged because there are really very few grand, new, modern ideas presented to them. The problem is whether or not we can make a course which would save them by maintaining their enthusiasm.
The lectures here are not in any way meant to be a survey course, but are very serious. I thought it would be best to re-write Feynman’s Lectures to make sure that most of the above-mentioned enthusiastic and smart people would be able to encompass (almost) everything that is in the lectures. 🙂
This is the link to Feynman’s original Preface, so you can see how my preface compares to his: same-same but very different, they’d say in Asia. 🙂
[…]
Doesn’t that sound like a nice project? 🙂
Jean Louis Van Belle, 22 May 2020
Post scriptum: It looks like we made Mr. Gottlieb and/or MIT very unhappy already: the link above does not work for us anymore (see what we get below). That’s very good: it is always nice to start a new publishing project with a little controversy. 🙂 We will have to use the good old paper print edition. We recommend you buy one too, by the way. 🙂 I think they are just a bit over US$100 now. Well worth it!
To put the historical record straight, the reader should note we started this blog before Mr. Gottlieb brought Feynman’s Lectures online. We actually wonder why he would be bothered by us referring to it. That’s what classical textbooks are for, aren’t they? They create common references to agree or disagree with, and why put a book online if you apparently don’t want it to be read or discussed? Noise like this probably means I am doing something right here. 🙂
Post scriptum 2: Done ! Or, at least, the first chapter is done ! Have a look: here is the link on ResearchGate and this is the link on Phil Gibbs’ site. Please do let me know what you think of it—whether you like it or not or, more importantly, what logic makes sense and what doesn’t. 🙂
Pre-scriptum (dated 27 June 2020): Two illustrations in this post were deleted by the dark force. We will not substitute them. The reference is given and it will help you to look them up yourself. In fact, we think it will greatly advance your understanding if you do so. Mr. Gottlieb may actually have done us a favor by trying to pester us.
Electrons, atoms, elementary particles and wave equations
The New Zealander Ernest Rutherford came to be known as the father of nuclear physics. He was the first to provide a reliable estimate of the order of magnitude of the size of the nucleus. To be precise, in the 1921 paper which we will discuss here, he came up with an estimate of about 15 fm for massive nuclei, which is the current estimate for the size of an uranium nucleus. His experiments also helped to significantly enhance the Bohr model of an atom, culminating – just before WW I started – in the Bohr-Rutherford model of an atom (E. Rutherford, Phil. Mag. 27, 488).
The Bohr-Rutherford model of an atom explained the (gross structure of the) hydrogen spectrum perfectly well, but it could not explain its finer structure—read: the orbital sub-shells which, as we all know now (but not very well then), result from the different states of angular momentum of an electron and the associated magnetic moment.
The issue is probably best illustrated by the two diagrams below, which I copied from Feynman’s Lectures. As you can see, the idea of subshells is not very relevant when looking at the gross structure of the hydrogen spectrum because the energy levels of all subshells are (very nearly) the same. However, the Bohr model of an atom—which is nothing but an exceedingly simple application of the E = h·f equation (see p. 4-6 of my paper on classical quantum physics)—cannot explain the splitting of lines for a lithium atom, which is shown in the diagram on the right. Nor can it explain the splitting of spectral lines when we apply a stronger or weaker magnetic field while exciting the atoms so as to induce emission of electromagnetic radiation.
Such dramatic statements are exaggerated. First, an even finer analysis of the emission spectrum (of hydrogen or whatever other atom) reveals that Schrödinger’s wave equation is also incomplete: the hyperfine splitting, the Zeeman splitting (anomalous or not) or the (in)famous Lamb shift are to be explained not only in terms of the magnetic moment of the electron but also in terms of the magnetic moment of the nucleus and its constituents (protons and neutrons)—or of the coupling between those magnetic moments (we may refer to our paper on the Lamb shift here). This cannot be captured in a wave equation: second-order differential equations are – quite simply – not sophisticated enough to capture the complexity of the atomic system here.
Also, as we pointed out previously, the current convention in regard to the use of the imaginary unit (i) in the wavefunction does not capture the spin direction and, therefore, makes abstraction of the direction of the magnetic moment too! The wavefunction therefore models theoretical spin-zero particles, which do not exist. In short, we cannot hope to represent anything real with wave equations and wavefunctions.
More importantly, I would dare to ask this: what use is an ‘explanation’ in terms of a wave equation if we cannot explain what the wave equation actually represents? As Feynman famously writes: “Where did we get it from? Nowhere. It’s not possible to derive it from anything you know. It came out of the mind of Schrödinger, invented in his struggle to find an understanding of the experimental observations of the real world.” Our best guess is that it, somehow, models (the local diffusion of) energy or mass densities as well as non-spherical orbital geometries. We explored such interpretations in our very first paper(s) on quantum mechanics, but the truth is this: we do not think wave equations are suitable mathematical tools to describe simple or complex systems that have some internal structure—atoms (think of Schrödinger’s wave equation here), electrons (think of Dirac’s wave equation), or protons (which is what some others tried to do, but I will let you do some googling here yourself).
We need to get back to the matter at hand here, which is Rutherford’s idea of an electron back in 1921. What can we say about it?
Rutherford’s contributions to the 1921 Solvay Conference
From what you know, and from what I write above, you will understand that Rutherford’s research focus was not on electrons: his prime interest was in explaining the atomic structure and in solving the mysteries of nuclear radiation—most notably the emission of alpha– and beta-particles as well as highly energetic gamma-rays by unstable or radioactive nuclei. In short, the nature of the electron was not his prime interest. However, this intellectual giant was, of course, very much interested in whatever experiment or whatever theory that might contribute to his thinking, and that explains why, in his contribution to the 1921 Solvay Conference—which materialized as an update of his seminal 1914 paper on The Structure of the Atom—he devotes considerable attention to Arthur Compton’s work on the scattering of light from electrons which, at the time (1921), had not even been published yet (Compton’s seminal article on (Compton) scattering was published in 1923 only).
It is also very interesting that, in the very same 1921 paper—whose 30 pages are more than a multiple of his 1914 article and later revisions of it (see, for example, the 1920 version of it, which actually has wider circulation on the Internet)—Rutherford also offers some short reflections on the magnetic properties of electrons while referring to Parson’s ring current model which, in French, he refers to as “l’électron annulaire de Parson.” Again, it is very strange that we should translate Rutherford’s 1921 remarks back in English—as we are sure the original paper must have been translated from English to French rather than the other way around.
However, it is what it is, and so here we do what we have to do: we give you a free translation of Rutherford’s remarks during the 1921 Solvay Conference on the state of research regarding the electron at that time. The reader should note these remarks are buried in a larger piece on the emission of β particles by radioactive nuclei which, as it turns out, are nothing but high-energy electrons (or their anti-matter counterpart—positrons). In fact, we should—before we proceed—draw attention to the fact that the physicists at the time had no clear notion of the concepts of protons and neutrons.
This is, indeed, another remarkable historical contribution of the 1921 Solvay Conference because, as far as I know, this is the first time Rutherford talks about the neutron hypothesis. It is quite remarkable he does not advance the neutron hypothesis to explain the atomic mass of atoms combining what we know think of as protons and neutrons (Rutherford regularly talks of a mix of ‘positive and negative electrons’ in the nucleus—neither the term proton or neutron was in use at the time) but as part of a possible explanation of nuclear fusion reactions in stars or stellar nebulae. This is, indeed, his response to a question during the discussions on Rutherford’s paper on the possibility of nuclear synthesis in stars or nebulae from the French physicist Jean Baptise Perrin who, independently from the American chemist William Draper Harkins, had proposed the possibility of hydrogen fusion just the year before (1919):
“We can, in fact, think of enormous energies being released from hydrogen nuclei merging to form helium—much larger energies than what can come from the Kelvin-Helmholtz mechanism. I have been thinking that the hydrogen in the nebulae might come from particles which we may refer to as ‘neutrons’: these would consist of a positive nucleus with an electron at an exceedingly small distance (“un noyau positif avec un électron à toute petite distance”). These would mediate the assembly of the nuclei of more massive elements. It is, otherwise, difficult to understand how the positively charged particles could come together against the repulsive force that pushes them apart—unless we would envisage they are driven by enormous velocities.”
We may add that, just to make sure he get this right, Rutherford is immediately requested to elaborate his point by the Danish physicist Martin Knudsen: “What’s the difference between a hydrogen atom and this neutron?”—which Rutherford simply answers as follows: “In a neutron, the electron would be very much closer to the nucleus.” In light of the fact that it was only in 1932 that James Chadwick would experimentally prove the existence of neutrons (and positively charged protons), we are, once again, deeply impressed by the the foresight of Rutherford and the other pioneers here: the predictive power of their theories and ideas is, effectively, truly amazing by any standard—including today’s. I should, perhaps, also add that I fully subscribe to Rutherford’s intuition that a neutron should be a composite particle consisting of a proton and an electron—but that’s a different discussion altogether.
We must come back to the topic of this post, which we will do now. Before we proceed, however, we should highlight one other contextual piece of information here: at the time, very little was known about the nature of α and β particles. We now know that beta-particles are electrons, and that alpha-particles combine two protons and two neutrons. That was not known in the 1920s, however: Rutherford and his associates could basically only see positive or negative particles coming out of these radioactive processes. This further underscores how much knowledge they were able to gain from rather limited sets of data.
Rutherford’s idea of an electron in 1921
So here is the translation of some crucial text. Needless to say, the italics, boldface and additions between [brackets] are not Rutherford’s but mine, of course.
“We may think the same laws should apply in regard to the scattering [“diffusion”] of α and β particles. [Note: Rutherford noted, earlier in his paper, that, based on the scattering patterns and other evidence, the force around the nucleus must respect the inverse square law near the nucleus—moreover, it must also do so very near to it.] However, we see marked differences. Anyone who has carefully studied the trajectories [photographs from the Wilson cloud chamber] of beta-particles will note the trajectories show a regular curvature. Such curved trajectories are even more obvious when they are illuminated by X-rays. Indeed, A.H. Compton noted that these trajectories seem to end in a converging helical path turning right or left. To explain this, Compton assumes the electron acts like a magnetic dipole whose axis is more or less fixed, and that the curvature of its path is caused by the magnetic field [from the (paramagnetic) materials that are used].
Further examination would be needed to make sure this curvature is not some coincidence, but the general impression is that the hypothesis may be quite right. We also see similar curvature and helicity with α particles in the last millimeters of their trajectories. [Note: α-particles are, obviously, also charged particles but we think Rutherford’s remark in regard to α particles also following a curved or helical path must be exaggerated: the order of magnitude of the magnetic moment of protons and neutrons is much smaller and, in any case, they tend to cancel each other out. Also, because of the rather enormous mass of α particles (read: helium nuclei) as compared to electrons, the effect would probably not be visible in a Wilson cloud chamber.]
The idea that an electron has magnetic properties is still sketchy and we would need new and more conclusive experiments before accepting it as a scientific fact. However, it would surely be natural to assume its magnetic properties would result from a rotation of the electron. Parson’s ring electron model [“électron annulaire“] was specifically imagined to incorporate such magnetic polarity [“polarité magnétique“].
A very interesting question here would be to wonder whether such rotation would be some intrinsic property of the electron or if it would just result from the rotation of the electron in its atomic orbital around the nucleus. Indeed, James Jeans usefully reminded me any asymmetry in an electron should result in it rotating around its own axis at the same frequency of its orbital rotation. [Note: The reader can easily imagine this: think of an asymmetric object going around in a circle and returning to its original position. In order to return to the same orientation, it must rotate around its own axis one time too!]
We should also wonder if an electron might acquire some rotational motion from being accelerated in an electric field and if such rotation, once acquired, would persist when decelerating in an(other) electric field or when passing through matter. If so, some of the properties of electrons would, to some extent, depend on their past.”
Each and every sentence in these very brief remarks is wonderfully consistent with modern-day modelling of electron behavior. We should add, of course, non-mainstream modeling of electrons but the addition is superfluous because mainstream physicists stubbornly continue to pretend electrons have no internal structure, and nor would they have any physical dimension. In light of the numerous experimental measurements of the effective charge radius as well as of the dimensions of the physical space in which photons effectively interfere with electrons, such mainstream assumptions seem completely ridiculous. However, such is the sad state of physics today.
Thinking backward and forward
We think that it is pretty obvious that Rutherford and others would have been able to adapt their model of an atom to better incorporate the magnetic properties not only of electrons but also of the nucleus and its constituents (protons and neutrons). Unfortunately, scientists at the time seem to have been swept away by the charisma of Bohr, Heisenberg and others, as well as by the mathematical brilliance of the likes of Sommerfeld, Dirac, and Pauli.
The road then was taken then has not led us very far. We concur with Oliver Consa’s scathing but essentially correct appraisal of the current sorry state of physics:
“QED should be the quantized version of Maxwell’s laws, but it is not that at all. QED is a simple addition to quantum mechanics that attempts to justify two experimental discrepancies in the Dirac equation: the Lamb shift and the anomalous magnetic moment of the electron. The reality is that QED is a bunch of fudge factors, numerology, ignored infinities, hocus-pocus, manipulated calculations, illegitimate mathematics, incomprehensible theories, hidden data, biased experiments, miscalculations, suspicious coincidences, lies, arbitrary substitutions of infinite values and budgets of 600 million dollars to continue the game. Maybe it is time to consider alternative proposals. Winter is coming.”
I would suggest we just go back where we went wrong: it may be warmer there, and thinking both backward as well as forward must, in any case, be a much more powerful problem solving technique than relying only on expert guessing on what linear differential equation(s) might give us some S-matrix linking all likely or possible initial and final states of some system or process. 🙂
Post scriptum: The sad state of physics is, of course, not limited to quantum electrodynamics only. We were briefly in touch with the PRad experimenters who put an end to the rather ridiculous ‘proton radius puzzle’ by re-confirming the previously established 0.83-0.84 range for the effective charge radius of a proton: we sent them our own classical back-of-the-envelope calculation of the Compton scattering radius of a proton based on the ring current model (see p. 15-16 of our paper on classical physics), which is in agreement with these measurements and courteously asked what alternative theories they were suggesting. Their spokesman replied equally courteously:
“There is no any theoretical prediction in QCD. Lattice [theorists] are trying to come up [with something] but that will take another decade before any reasonable number [may come] from them.”
This e-mail exchange goes back to early February 2020. There has been no news since. One wonders if there is actually any real interest in solving puzzles. The physicist who wrote the above may have been nominated for a Nobel Prize in Physics—I surely hope so because, in contrast to some others, he and his team surely deserve one— but I think it is rather incongruous to finally firmly establish the size of a proton while, at the same time, admit that protons should not have any size according to mainstream theory—and we are talking the respected QCD sector of the equally respected Standard Model here!
We understand, of course! As Freddy Mercury famously sang: The Show Must Go On.
That’s a weird title, isn’t it? It’s the title of a fun paper (fun for me, at least—I hope for you too, of course), in which I try to show where quantum mechanics went wrong, and why and when the job of both the academic physicist as well as of the would-be student of quantum mechanics turned into calculating rather than explaining what might or might not be happening.
Modern quantum physicists are, effectively, like economists modeling input-output relations: if they are lucky, they get some kind of mathematical description of what goes in and what goes out of a process or an interaction, but the math doesn’t tell them how stuff actually happens.
So this paper of ours talks about that—in a very detailed way, actually—and then we bring the Zitterbewegung electron model and our photon model together to provide a classical explanation of Compton scattering of photons by electrons so as to show what electron-photon interference might actually be: two electromagnetic oscillations interfering (classically) with each other.
The whole thing also offers some reflections on the nature of the Uncertainty Principle.
Enjoy ! 🙂 When everything is said and done, the mystery of quantum mechanics is this: why is an electron an electron, and why is a proton a proton? 🙂
PS: I am sure you think my last statement is nonsensical. If so, I invite you to think again. Whomever can explain the electron-proton mass ratio will be able to explain the difference between the electromagnetic and strong force. In other words, he or she will be able to connect the electromagnetic and the strong ‘sector’ of a classical interpretation of quantum mechanics. 🙂
Corona-virus is bad, but it does have one advantage: more time to work on my hobby ! I finally managed to have a look at what the (in)famous Lamb shift may or may not be. Here is the link to the paper.
I think it’s good. Why? Well… It’s that other so-called ‘high precision test’ of mainstream quantum mechanics (read: quantum field theory)m but so I found it’s just like the rest: ‘Cargo Cult Science.’ [I must acknowledge a fellow amateur physicist and blogger for that reference: it is, apparently, a term coined by Richard Feynman!]
To All: Enjoy and please keep up the good work in these very challenging times !
In recent posts, we have been very harsh in criticizing mainstream academics for not even trying to make sense of quantum mechanics—labeling them as mystery wallahs or, worse, as Oliver Consa does, frauds. While we think the latter criticism is fully justified –we can and should think of some of the people we used to admire as frauds now – I think we should also acknowledge most of the professional physicists are actually doing what we all are doing and that is to, somehow, try to make sense of it all. Nothing more, nothing less.
However, they are largely handicapped: we can say or whatever we write, and we do not need to think about editorial lines. In other words: we are free to follow logic and practice real science. Let me insert a few images here to lighten the discussion. One is a cartoon from the web and the other was sent to me by a friendly academic. As for the painting, if you don’t know him already, you should find out for yourself. 🙂
Both mainstream as well as non-mainstream insiders and outsiders are having very heated discussions nowadays. When joining such discussions, I think we should start by acknowledging that Nature is actually difficult to understand: if it would be easy, we would not be struggling with it. Hence, anyone who wants you to believe it actually all is easy and self-evident is a mystery wallah or a fraud too—at the other end of the spectrum!
For example, I really dobelieve that the ring current model of elementary particles elegantly combines wave-particle duality and, therefore, avoids countless dichotomies (such as the boson-fermion dichotomy, for example) that have hampered mankind’s understanding of what an elementary particle might actually be. At the same time, I also acknowledge that the model raises its own set of very fundamental questions (see our paper on the nature of antimatter and some other unresolved issues) and can, therefore, be challenged as well. In short, I don’t want to come across as being religious about our own interpretation of things because it is what it is: an interpretation of things we happen to believe in. Why? Because it happens to come across as being more rational, simpler or – to use Dirac’s characterization of a true theory – just beautiful.
So why are we having so much trouble accepting the Copenhagen interpretation of quantum mechanics? Why are we so shocked by Consa’s story on man’s ambition in this particular field of human activity—as opposed to, say, politics or business? It’s because people like you and me thought these men were like us—much cleverer, perhaps, but, otherwise, totally like us: people searching for truth—or some basic version of it, at least! That’s why Consa’s conclusion hurts us so much:
“QED should be the quantized version of Maxwell’s laws, but it is not that at all. […] QED is a bunch of fudge factors, numerology, ignored infinities, hocus-pocus, manipulated calculations, illegitimate mathematics, incomprehensible theories, hidden data, biased experiments, miscalculations, suspicious coincidences, lies, arbitrary substitutions of infinite values and budgets of 600 million dollars to continue the game.”
Amateur physicists like you and me thought we were just missing something: some glaring (in)consistency in their or our theories which we just couldn’t see but that, inevitably, we would suddenly stumble upon while wracking our brains trying to grind through it all. We naively thought all of the sleepless nights, all the agony and all the sacrifices in terms of time and trouble would pay off, one day, at least! But, no, we’ve been wasting countless years to try to understand something which one can’t understand anyway—something which is, quite simply, not true. It was nothing but a bright shining lie and our anger is, therefore, fully justified. It sure did not do much to improve our mental and physical well-being, did it?
Such indignation may be justified but it doesn’t answer the more fundamental question: why did we even bother? Why are we so passionate about these things? Why do we feel that the Copenhagen interpretation cannotbe right? One reason, of course, is that we were never alone here. The likes of Einstein, Dirac, and even Bell told us all along. Now that I think of it, all mainstream physicists that I know are critical of us – amateur physicists – but, at the same time, are also openly stating that the Standard Model isn’t satisfactory—and I am really thinking of mainstream researchers here: the likes of Zwiebach, Hossenfelder, Smolin, Gasparan, Batelaan, Pohl and so many others: they are all into string theory or, else, trying to disprove this or that quantum-mechanical theorem. [Batelaan’s reseach on the exchange of momentum in the electron double-slit experiment, for example, is very interesting in this regard.]
In fact, now that I think of it: can you give me one big name who is actually passionate about the Standard Model—apart from one or two Nobel Prize winners who got an undeserved price for it? If no one thinks it can be right, then why can’t we just accept it just isn’t?
I’ve come to the conclusion the ingrained abhorrence – both of professional as well as of amateur physicists – is rooted in this: the Copenhagen interpretation amounts to a surrender of reason. It is, therefore, not science, but religion. Stating that it is a law of Nature that even experts cannot possibly understand Nature “the way they would like to”, as Richard Feynman put it, is both intuitively as well as rationally unacceptable.
Intuitively—and rationally? That’s a contradictio in terminis, isn’t it? We don’t think so. I think this is an outstanding example of a locus in our mind where intuition and rationality do meet each other.
I just produced a first draft of the Metaphysics page of my new physics site. It does not only deal with the fundamental concepts we have been developing but – as importantly, if not more – it also offers some thoughts on all of the unanswered questions which, when trying to do science and be logical, are at least as important as the questions we do consider to be solved. Click the link or the tab. Enjoy ! 🙂 As usual, feedback is more than welcome!
Yesterday night, I got this email from a very bright young physicist: Dr. Oliver Consa. He is someone who – unlike me – does have the required Dr and PhD credentials in physics (I have a drs. title in economics) – and the patience that goes with it – to make some more authoritative statements in the weird world of quantum mechanics. I recommend you click the link in the email (copied below) and read the paper. Please do it!
It is just 12 pages, and it is all extremely revealing. Very discomforting, actually, in light of all the other revelations on fake news in other spheres of life.
Many of us – and, here, I just refer to those who are reading my post – all sort of suspected that some ‘inner circle’ in the academic circuit had cooked things up:the Mystery Wallahs, as I refer to them now. Dr. Consa’s paper shows our suspicion is well-founded.
QUOTE
Dear fellow scientist,
I send you this mail because you have been skeptical about Foundations of Physics. I think that this new paper will be of your interest. Feel free to share it with your colleagues or publish it on the web. I consider it important that this paper serves to open a public debate on this subject.
Abstract “Quantum electrodynamics (QED) is considered the most accurate theory in the history of science. However, this precision is based on a single experimental value: the anomalous magnetic moment of the electron (g-factor). An examination of QED history reveals that this value was obtained using illegitimate mathematical traps, manipulations and tricks. These traps included the fraud of Kroll & Karplus, who acknowledged that they lied in their presentation of the most relevant calculation in QED history. As we will demonstrate in this paper, the Kroll & Karplus scandal was not a unique event. Instead, the scandal represented the fraudulent manner in which physics has been conducted from the creation of QED through today.” (12 pag.)
Pre-scriptum (PS), added on 6 March 2020: The ideas below also naturally lead to a theory about what a neutrino might actually be. As such, it’s a complete ‘alternative’ Theory of Everything. I uploaded the basics of such theory on my academia.edu site. For those who do not want to log on to academia.edu, you can also find the paper on my author’s page on Phil Gibb’s site.
Text:
We were rather tame in our last paper on the oscillator model of an electron. We basically took some philosophical distance from it by stating we should probably only think of it as a mathematical equivalent to Hestenes’ concept of the electron as a superconducting loop. However, deep inside, we feel we should not be invoking Maxwell’s laws of electrodynamics to explain what a proton and an electron might actually be. The basics of the ring current model can be summed up in one simple equation:
c = a·ω
This is the formula for the tangential velocity. Einstein’s mass-energy equivalence relation and the Planck-Einstein relation explain everything else[1], as evidenced by the fact that we can immediately derive the Compton radius of an electron from these three equations, as shown below:The reader might think we are just ‘casually connecting formulas’ here[2] but we feel we have a full-blown theory of the electron here: simple and consistent. The geometry of the model is visualized below. We think of an electron (and a proton) as consisting of a pointlike elementary charge – pointlike but notdimensionless[3] – moving about at (nearly) the speed of light around the center of its motion.
The relation works perfectly well for the electron. However, when applying the a = ħ/mc radius formula to a proton, we get a value which is about 1/4 of the measured proton radius: about 0.21 fm, as opposed to the 0.83-0.84 fm charge radius which was established by Professors Pohl, Gasparan and others over the past decade.[4] In our papers on the proton radius[5], we motivated the 1/4 factor by referring to the energy equipartition theorem and assuming energy is, somehow, equally split over electromagnetic field energy and the kinetic energy in the motion of the zbw charge. However, the reader must have had the same feeling as we had: these assumptions are rather ad hoc. We, therefore, propose something more radical:
When considering systems (e.g. electron orbitals) and excited states of particles, angular momentum comes in units (nearly) equal to ħ, but when considering the internal structure of elementary particles, (orbital) angular momentum comes in an integer fraction of ħ. This fraction is 1/2 for the electron[6] and 1/4 for the proton.
Let us write this out for the proton radius:What are the implications for the assumed centripetal force keeping the elementary charge in motion? The centripetal acceleration is equal to ac = vt2/a = a·ω2. It is probably useful to remind ourselves how we get this result so as to make sure our calculations are relativistically correct. The position vector r (which describes the position of the zbw charge) has a horizontal and a vertical component: x = a·cos(ωt) and y = a·sin(ωt). We can now calculate the two components of the (tangential) velocity vector v = dr/dt as vx = –a·ω·sin(ωt) and vy y = –a· ω·cos(ωt) and, in the next step, the components of the (centripetal) acceleration vector ac: ax = –a·ω2·cos(ωt) and ay = –a·ω2·sin(ωt). The magnitude of this vector is then calculated as follows:
Now, Newton’s force law tells us that the magnitude of the centripetal force will be equal to:
F = mγ·ac = mγ·a·ω2
As usual, the mγ factor is, once again, the effective mass of the zbw charge as it zitters around the center of its motion at (nearly) the speed of light: it is half the electron mass.[7] If we denote the centripetal force inside the electron as Fe, we can relate it to the electron mass me as follows:Assuming our logic in regard to the effective mass of the zbw charge inside a proton is also valid – and using the 4E = ħω and a = ħ/4mc relations – we get the following equation for the centripetal force inside of a proton: How should we think of this? In our oscillator model, we think of the centripetal force as a restoring force. This force depends linearly on the displacement from the center and the (linear) proportionality constant is usually written as k. Hence, we can write Fe and Fp as Fe = -kex and Fp = -kpx respectively. Taking the ratio of both so as to have an idea of the respective strength of both forces, we get this:
The ap and ae are acceleration vectors – not the radius. The equation above seems to tell us that the centripetal force inside of a proton gives the zbw charge inside – which is nothing but the elementary charge, of course – an acceleration that is four times that of what might be going on inside the electron.
Nice, but how meaningful are these relations, really? If we would be thinking of the centripetal or restoring force as modeling some elasticity of spacetime – the guts intuition behind far more complicated string theories of matter – then we may think of distinguishing between a fundamental frequency and higher-level harmonics or overtones.[8] We will leave our reflections at that for the time being.
We should add one more note, however. We only talked about the electron and the proton here. What about other particles, such as neutrons or mesons? We do not consider these to be elementary because they are not stable: we think they are not stable because the Planck-Einstein relation is slightly off, which causes them to disintegrate into what we’ve been trying to model here: stable stuff. As for the process of their disintegration, we think the approach that was taken by Gell-Man and others[9] is not productive: inventing new quantities that are supposedly being conserved – such as strangeness – is… Well… As strange as it sounds. We, therefore, think the concept of quarks confuses rather than illuminates the search for a truthful theory of matter.
Jean Louis Van Belle, 6 March 2020
[1] In this paper, we make abstraction of the anomaly, which is related to the zbw charge having a (tiny) spatial dimension.
[2] We had a signed contract with the IOP and WSP scientific publishing houses for our manuscript on a realist interpretation of quantum mechanics (https://vixra.org/abs/1901.0105) which was shot down by this simple comment. We have basically stopped tried convincing mainstream academics from that point onwards.
[6] The reader may wonder why we did not present the ½ fraction is the first set of equations (calculation of the electron radius). We refer him or her to our previous paper on the effective mass of the zbw charge (https://vixra.org/abs/2003.0094). The 1/2 factor appears when considering orbital angular momentum only.
[7] The reader may not be familiar with the concept of the effective mass of an electron but it pops up very naturally in the quantum-mechanical analysis of the linear motion of electrons. Feynman, for example, gets the equation out of a quantum-mechanical analysis of how an electron could move along a line of atoms in a crystal lattice. See: Feynman’s Lectures, Vol. III, Chapter 16: The Dependence of Amplitudes on Position (https://www.feynmanlectures.caltech.edu/III_16.html). We think of the effective mass of the electron as the relativistic mass of the zbw charge as it whizzes about at nearly the speed of light. The rest mass of the zbw charge itself is close to – but also not quite equal to – zero. Indeed, based on the measured anomalous magnetic moment, we calculated the rest mass of the zbw charge as being equal to about 3.4% of the electron rest mass (https://vixra.org/abs/2002.0315).
I’ve been working across Asia – mainly South Asia – for over 25 years now. You will google the exact meaning but my definition of a wallah is a someone who deals in something: it may be a street vendor, or a handyman, or anyone who brings something new. I remember I was one of the first to bring modern mountain bikes to India, and they called me a gear wallah—because they were absolute fascinated with the number of gears I had. [Mountain bikes are now back to a 2 by 10 or even a 1 by 11 set-up, but I still like those three plateaux in front on my older bikes—and, yes, my collection is becoming way too large but I just can’t do away with it.]
It just makes me wonder: why is the outcome of this 100-year old battle between mainstream hocus-pocus and real physics so undecided?
I’ve come to think of mainstream physicists as peddlers in mysteries—whence the title of my post. It’s a tough conclusion. Physics is supposed to be the King of Science, right? Hence, we shouldn’t doubt it. At the same time, it is kinda comforting to know the battle between truth and lies rages everywhere—including inside of the King of Science.
A rather eminent professor in physics – who has contributed significantly to solving the so-called ‘proton radius puzzle’ – advised me to not think of the anomalous magnetic moment of the electron as an anomaly. It led to a breakthrough in my thinking of what an electron might actually be. The fine-structure constant should be part and parcel of the model, indeed. Check out my last paper ! I’d be grateful for comments !
I know the title of this post sounds really arrogant. It is what it is. Whatever brain I have has been thinking about these issues consciously and unconsciously for many years now. It looks good to me. When everything is said and done, the function of our mind is to make sense. What’s sense-making? I’d define sense-making as creating consistency between (1) the structure of our ideas and theories (which I’ll conveniently define as ‘mathematical’ here) and (2) what we think of as the structure of reality (which I’ll define as ‘physical’).
I started this blog reading Penrose (see the About page of this blog). And then I just put his books aside and started reading Feynman. I think I should start re-reading Penrose. His ‘mind-physics-math’ triangle makes a lot more sense to me now.
JL
PS: I agree the title of my post is excruciatingly arrogant but – believe me – I could have chosen an even more arrogant title. Why? Because I think my electron model actually explains mass. And it does so in a much more straightforward manner than Higgs, or Brout–Englert–Higgs, or Englert–Brout–Higgs–Guralnik–Hagen–Kibble, Anderson–Higgs, Anderson–Higgs–Kibble, Higgs–Kibble, or ABEGHHK’t (for Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble, and ‘t Hooft) do. [I am just trying to attribute the theory here using the Wikipedia article on it.]