Strings in classical and quantum physics

This post is not about string theory. The goal of this post is much more limited: it’s to give you a better understanding of why the metaphor of the string is so appealing. Let’s recapitulate the basics by see how it’s used in classical as well as in quantum physics.

In my posts on music and math, or music and physics, I described how a simple single string always vibrates in various modes at the same time: every tone is a mixture of an infinite number of elementary waves. These elementary waves, which are referred to as harmonics (or as (normal) modes, indeed) are perfectly sinusoidal, and their amplitude determines their relative contribution to the composite waveform. So we can always write the waveform F(t) as the following sum:

F(t) = a1sin(ωt) + a2sin(2ωt) + a3sin(3ωt) + … + ansin(nωt) + …

[If this is your first reading of my post, and the formula shies you away, please try again. I am writing most of my posts with teenage kids in mind, and especially this one. So I will not use anything else than simple arithmetic in this post: no integrals, no complex numbers, no logarithms. Just a bit of geometry. That’s all. So, yes, you should go through the trouble of trying to understand this formula. The only thing that you may have some trouble with is ω, i.e. angular frequency: it’s the frequency expressed in radians per time unit, rather than oscillations per second, so ω = 2π·f = 2π/T, with the frequency as you know it (i.e. oscillations per second) and T the period of the wave.]

I also noted that the wavelength of these component waves (λ) is determined by the length of the string (L), and by its length only: λ1 = 2L, λ2 = L, λ3 = (2/3)·L. So these wavelengths do not depend on the material of the string, or its tension. At any point in time (so keeping t constant, rather than x, as we did in the equation above), the component waves look like this:

620px-Harmonic_partials_on_strings

etcetera (1/8, 1/9,…,1/n,… 1/∞)

That the wavelengths of the harmonics of any actual string only depend on its length is an amazing result in light of the complexities behind: a simple wound guitar string, for example, is not simple at all (just click the link here for a quick introduction to guitar string construction). Simple piano wire isn’t simple either: it’s made of high-carbon steel, i.e. a very complex metallic alloy. In fact, you should never think any material is simple: even the simplest molecular structures are very complicated things. Hence, it’s quite amazing all these systems are actually linear systems and that, despite the underlying complexity, those wavelength ratios form a simple harmonic series, i.e. a simple reciprocal function y = 1/x, as illustrated below.

602px-Integral_Test

A simple harmonic series? Hmm… I can’t resist noting that the harmonic series is, in fact, a mathematical beast. While its terms approach zero as x (or n) increases, the series itself is divergent. So it’s not like 1+1/2+1/4+1/8+…+1/2n+…, which adds up to 2. Divergent series don’t add up to any specific number. Even Leonhard Euler – the most famous mathematician of all times, perhaps – struggled with this. In fact, as late as in 1826, another famous mathematician, Niels Henrik Abel (in light of the fact he died at age 26 (!), his legacy is truly amazing), exclaimed that a series like this was “an invention of the devil”, and that it should not be used in any mathematical proof. But then God intervened through Abel’s contemporary Augustin-Louis Cauchy 🙂 who finally cracked the nut by rigorously defining the mathematical concept of both convergent as well as divergent series, and equally rigorously determining their possibilities and limits in mathematical proofs. In fact, while medieval mathematicians had already grasped the essentials of modern calculus and, hence, had already given some kind of solution to Zeno’s paradox of motion, Cauchy’s work is the full and final solution to it. But I am getting distracted, so let me get back to the main story.

More remarkable than the wavelength series itself, is its implication for the respective energy levels of all these modes. The material of the string, its diameter, its tension, etc will determine the speed with which the wave travels up and down the string. [Yes, that’s what it does: you may think the string oscillates up and down, and it does, but the waveform itself travels along the string. In fact, as I explained in my previous post, we’ve got two waves traveling simultaneously: one going one way and the other going the other.] For a specific string, that speed (i.e. the wave velocity) is some constant, which we’ll denote by c. Now, is, obviously, the product of the wavelength (i.e. the distance that the wave travels during one oscillation) and its frequency (i.e. the number of oscillations per time unit), so c = λ·f. Hence, f = c/λ and, therefore, f1 = (1/2)·c/L, f2 = (2/2)·c/L, f3 = (3/2)·c/L, etcetera. More in general, we write fn = (n/2)·c/L. In short, the frequencies are equally spaced. To be precise, they are all (1/2)·c/L apart.

Now, the energy of a wave is directly proportional to its frequency, always, in classical as well as in quantum mechanics. For example, for photons, we have the Planck-Einstein relation: E = h·f = ħ·ω. So that relation states that the energy is proportional to the (light) frequency of the photon, with h (i.e. he Planck constant) as the constant of proportionality. [Note that ħ is not some different constant. It’s just the ‘angular equivalent’ of h, so we have to use ħ = h/2π when frequencies are expressed in angular frequency, i.e. radians per second rather than hertz.] Because of that proportionality, the energy levels of our simple string are also equally spaced and, hence, inserting another proportionality constant, which I’ll denote by a instead of (because it’s some other constant, obviously), we can write:

En = a·fn = (n/2)·a·c/L

Now, if we denote the fundamental frequency f1 = (1/2)·c/L, quite simply, by f (and, likewise, its angular frequency as ω), then we can re-write this as:

En = n·a·f = n·ā·ω (ā = a/2π)

This formula is exactly the same as the formula used in quantum mechanics when describing atoms as atomic oscillators, and why and how they radiate light (think of the blackbody radiation problem, for example), as illustrated below: En = n·ħ·ω = n·h·f. The only difference between the formulas is the proportionality constant: instead of a, we have Planck’s constant here: h, or ħ when the frequency is expressed as an angular frequency.

quantum energy levels

This grand result – that the energy levels associated with the various states or modes of a system are equally spaced – is referred to as the equipartition theorem in physics, and it is what connects classical and quantum physics in a very deep and fundamental way.

In fact, because they’re nothing but proportionality constants, the value of both a and h depends on our units. If w’d use the so-called natural units, i.e. equating ħ to 1, the energy formula becomes En = n·ω, and, hence, our unit of energy and our unit of frequency become one and the same. In fact, we can, of course, also re-define our time unit such that the fundamental frequency ω is one, i.e. one oscillation per (re-defined) time unit, so then we have the following remarkable formula:

En = n

Just think about it for a moment: what I am writing here is E0 = 0, E1 = 1, E2 = 2, E3 = 3, E4 = 4, etcetera. Isn’t that amazing? I am describing the structure of a system here – be it an atom emitting or absorbing photons, or a macro-thing like a guitar string – in terms of its basic components (i.e. its modes), and it’s as simple as counting: 0, 1, 2, 3, 4, etc.

You may think I am not describing anything real here, but I am. We cannot do whatever we wanna do: some stuff is grounded in reality, and in reality only—not in the math. Indeed, the fundamental frequency of our guitar string – which we used as our energy unit – is a property of the string, so that’s real: it’s not just some mathematical shape out: it depends on the string’s length (which determines its wavelength), and it also depends on the propagation speed of the wave, which depends on other basic properties of the string, such as its material, its diameter, and its tension. Likewise, the fundamental frequency of our atomic oscillator is a property of the atomic oscillator or, to use a much grander term, a property of the Universe. That’s why h is a fundamental physical constant. So it’s not like π or e. [When reading physics as a freshman, it’s always useful to clearly distinguish physical constants (like Avogadro’s number, for example) from mathematical constants (like Euler’s number).]

The theme that emerges here is what I’ve been saying a couple of times already: it’s all about structure, and the structure is amazingly simple. It’s really that equipartition theorem only: all you need to know is that the energy levels of the modes of a system – any system really: an atom, a molecular system, a string, or the Universe itself – are equally spaced, and that the space between the various energy levels depends on the fundamental frequency of the system. Moreover, if we use natural units, and also re-define our time unit so the fundamental frequency is equal to 1 (so the frequencies of the other modes are 2, 3, 4 etc), then the energy levels are just 0, 1, 2, 3, 4 etc. So, yes, God kept things extremely simple. 🙂

In order to not cause too much confusion, I should add that you should read what I am writing very carefully: I am talking the modes of a system. The system itself can have any energy level, of course, so there is no discreteness at the level of the system. I am not saying that we don’t have a continuum there. We do. What I am saying is that its energy level can always be written as a (potentially infinite) sum of the energies of its components, i.e. its fundamental modes, and those energy levels are discrete. In quantum-mechanical systems, their spacing is h·f, so that’s the product of Planck’s constant and the fundamental frequency. For our guitar, the spacing is a·f (or, using angular frequency, ā·ω: it’s the same amount). But that’s it really. That’s the structure of the Universe. 🙂

Let me conclude by saying something more about a. What information does it capture? Well… All of the specificities of the string (like its material or its tension) determine the fundamental frequency f and, hence, the energy levels of the basic modes of our string. So a has nothing to do with the particularities of our string, of our system in general. However, we can, of course, pluck our string very softly or, conversely, give it a big jolt. So our a coefficient is not related to the string as such, but to the total energy of our string. In other words, a is related to those amplitudes  a1, a2, etc in our F(t) = a1sin(ωt) + a2sin(2ωt) + a3sin(3ωt) + … + ansin(nωt) + … wave equation.

How exactly? Well… Based on the fact that the total energy of our wave is equal to the sum of the energies of all of its components, I could give you some formula. However, that formula does use an integral. It’s an easy integral: energy is proportional to the square of the amplitude, and so we’re integrating the square of the wave function over the length of the string. But then I said I would not have any integral in this post, and so I’ll stick to that. In any case, even without the formula, you know enough now. For example, one of the things you should be able to reflect on is the relation between a and h. It’s got to do with structure, of course. 🙂 But I’ll let you think about that yourself.

[…] Let me help you. Think of the meaning of Planck’s constant h. Let’s suppose we’d have some elementary ‘wavicle’, like that elementary ‘string’ that string theorists are trying to define: the smallest ‘thing’ possible. It would have some energy, i.e. some frequency. Perhaps it’s just one full oscillation. Just enough to define some wavelength and, hence, some frequency indeed. Then that thing would define the smallest time unit that makes sense: it would the time corresponding to one oscillation. In turn, because of the E = h·relation, it would define the smallest energy unit that makes sense. So, yes, h is the quantum (or fundamental unit) of energy. It’s very small indeed (h = 6.626070040(81)×10−34 J·s, so the first significant digit appears only after 33 zeroes behind the decimal point) but that’s because we’re living at the macro-scale and, hence, we’re measuring stuff in huge units: the joule (J) for energy, and the second (s) for time. In natural units, h would be one. [To be precise, physicist prefer to equate ħ, rather than h, to one when talking natural units. That’s because angular frequency is more ‘natural’ as well when discussing oscillations.]

What’s the conclusion? Well… Our will be some integer multiple of h. Some incredibly large multiple, of course, but a multiple nevertheless. 🙂

Post scriptum: I didn’t say anything about strings in this post or, let me qualify, about those elementary ‘strings’ that string theorists try to define. Do they exist? Feynman was quite skeptical about it. He was happy with the so-called Standard Model of phyics, and he would have been very happy to know that the existence Higgs field has been confirmed experimentally (that discovery is what prompted my blog!), because that confirms the Standard Model. The Standard Model distinguishes two types of wavicles: fermions and bosons. Fermions are matter particles, such as quarks and electrons. Bosons are force carriers, like photons and gluons. I don’t know anything about string theory, but my guts instinct tells me there must be more than just one mathematical description of reality. It’s the principle of duality: concepts, theorems or mathematical structures can be translated into other concepts, theorems or structures. But… Well… We’re not talking equivalent descriptions here: string theory is different theory, it seems. For a brief but totally incomprehensible overview (for novices at least), click on the following link, provided by the C.N. Yang Institute for Theoretical Physics. If anything, it shows I’ve got a lot more to study as I am inching forward on the difficult Road to Reality. 🙂

Advertisements

Loose ends: on energy of radiation and polarized light

I said I would move on to another topic, but let me wrap up some loose ends in this post. It will say a few things about the energy of a field; then it will analyze these electron oscillators in some more detail; and, finally, I’ll say a few words about polarized light.

The energy of a field

You may or may not remember, from our discussions on oscillators and energy, that the total energy in a linear oscillator is a constant sum of two variables: the kinetic energy mv2/2 and the potential energy (i.e. the energy stored in the spring as it expands and contracts) kx2/2 (remember that the force is -kx). So the kinetic energy is proportional to the square of the velocity, and the potential energy to the square of the displacement. Now, from the general solution that we had obtained for a linear oscillator – damped or not – we know that the displacement x, its velocity dx/dt, and even its acceleration are all proportional to the magnitude of the field – with different factors of proportionality of course. Indeed, we have x = qeE0eiωt/m(ω02–ω2), and so every time we take a derivative, we’ll be bring a iω factor down (and so we’ll have another factor of proportionality), but the E0 factor is still the same, and a factor of proportionality multiplied with some constant is still a factor of proportionality. Hence, the energy should be proportional to the square of the amplitude of the motion E0. What more can we say about it?

The first thing to note is that, for a field emanating from a point source, the magnitude of the field vector E will vary inversely with r. That’s clear from our formula for radiation:

Formula 5

Hence, the energy that the source can deliver will vary inversely as the square of the distance. That implies that the energy we can take out of a wave, within a given conical angle, will always be the same, not matter how far away we are. What we have is an energy flux spreading over a greater and greater effective area. That’s what’s illustrated below: the energy flowing within the cone OABCD is independent of the distance r at which it is measured.

Energy cone

However, these considerations do not answer the question: what is that factor of proportionality? What’s its value? What does it depend on?

We know that our formula for radiation is an approximate formula, but it’s accurate for what is called the “wave zone”, i.e. for all of space as soon as we are more than a few wavelengths away from the source. Likewise, Feynman derives an approximate formula only for the energy carried by a wave using the same framework that was used to derive the dispersion relation. It’s a bit boring – and you may just want to go to the final result – but, well… It’s kind of illustrative of how physics analyzes physical situations and derives approximate formulas to explain them.

Let’s look at that framework again: we had a wave coming in, and then a wave being transmitted. In-between, the plate absorbed some of the energy, i.e. there was some damping. The situation is shown below, and the exact formulas were derived in the previous post.

radiation and transparent sheet

Now, we can write the following energy equation for a unit area:

Energy in per second = energy out per second + work done per second

That’s simple, you’ll say. Yes, but let’s see where we get with this. For the energy that’s going in (per second), we can write that as α〈Es2〉, so that’s the averaged square of the amplitude of the electric field emanating from the source multiplied by a factor α. What factor α? Well… That’s exactly what we’re trying to find out: be patient.

For the energy that’s going out per second, we have α〈Es2 + Ea2〉. Why the same α? Well… The transmitted wave is traveling through the same medium as the incoming wave (air, most likely), so it should be the same factor of proportionality. Now, α〈Es2 + Ea2〉 = α[〈Es2〉 + 2〈Es〉〈Ea〉 + 〈Ea2〉]. However, we know that we’re looking at a very thin plate here only, and so the amplitude Ea must be small as compared to Ea. So we can leave its averaged square 〈Ea2〉 value out. Indeed, as mentioned above, we’re looking at an approximation here: any term that’s proportional with NΔz, we’ll leave in (and so we’ll leave 〈Es〉〈Ea〉 in), but terms that are proportional to (NΔz)2 or a higher power can be left out. [That’s, in fact, also the reason why we don’t bother to analyze the reflected wave.]

So we now have the last term: the work done per second in the plate. Work done is force times distance, and so the work done per second (i.e. the power being delivered) is the force times the velocity. [In fact, we should do a dot product but the force and the velocity point are along the same direction – except for a possible minus sign – and so that’s alright.] So, for each electron oscillator, the work done per second will be 〈qeEsv〉 and, hence, for a unit area, we’ll have NΔzqe〈Esv〉. So our energy equation becomes:

α〈Es2〉 = α〈Es2〉 + 2α〈Es〉〈Ea〉 + NΔzqe〈Esv〉

⇔ –2α〈Es〉〈Ea〉 = NΔzqe〈Esv〉

Now, we had a formula for Ea (we didn’t do the derivation of this one though: just accept it):

Formula 8

We can substitute this in the energy equation, noting that the average of Ea is not dependent from time. So the left-hand side of our energy equation becomes:

 

Formula 9

However, Es(at z) is Es(at atoms) retarded by z/c, so we can insert the same argument. But then, now that we’ve made sure that we got the same argument for Es and v, we know that such average is independent of time and, hence, it will be equal to the 〈Esv〉 factor on the right-hand side of our energy equation, which means this factor can be scrapped. The NΔzqe (and that 2 in the numerator and denominator) can be scrapped as well, of course. We then get the remarkably simple result that

α = ε0c

Hence, the energy carried in an electric wave per unit area and per unit time, which is also referred to as the intensity of the wave, equals:

〈S〉 = ε0c〈E〉

The rate of radiation of energy

Plugging our formula for radiation above into this formula, we get an expression for the power per square meter radiated in the direction q:

Formula 10

In this formula, a’ is, of course, the retarded acceleration, i.e. the value of a at point t – r/c. The formula makes it clear that the power varies inversely as the square of the distance, as it should, from what we wrote above. I’ll spare you the derivation (you’ve had enough of these derivations,  I am sure), but we can use this formula to calculate the total energy radiated in all directions, by integrating the formula over all directions. We get the following general formula:

Formula 10-5

This formula is no longer dependent on the distance r – which is also in line with what we said above: in a given cone, the energy flux is the same. In this case, the ‘cone’ is actually a sphere around the oscillating charge, as illustrated below.

Power out of a sphere

Now, we usually assume we have a nice sinusoidal function for the displacement of the charge and, hence, for the acceleration, so we’ll often assume that the acceleration a equals a = –ω2x0et. In that case, we can average over a cycle (note that the average of a cosine is one-half) and we get:

Formula 11

Now, historically, physicists used a value written as e2, not to be confused with the transcendental number e, equal to e2 = qe2/4πe0, which – when inserted above – yields the older form of the formula above:

P = 2e2a2/3c3

In fact, we actually worked with that e2 factor already, when we were talking about potential energy and calculated the potential energy between a proton and an electron at distance r: that potential energy was equal to e2/r but that was a while ago indeed – and so you’ll probably not remember.

Atomic oscillators

Now, I can imagine you’ve had enough of all these formulas. So let me conclude by giving some actual numbers and values for things. Let’s look at these atomic oscillators and put some values in indeed. Let’s start with calculating the Q of an atomic oscillator.

You’ll remember what the Q of an oscillator is: it is a measure of the ‘quality’ (that’s what the Q stands for really) of a particular oscillator. A high Q implies that, if we ‘hit’ the oscillator, it will ‘ring’ for many cycles, so its decay time will be quite long. It also means that the peak width of its ‘frequency response’ will be quite tall. Huh? The illustrations below will refresh your memory.

The first one (below) gives a very general form for a typical resonance: we have a fixed frequency f0 (which defines the period T, and vice versa), and so this oscillator ‘rings’ indeed, and slowly dies out. An associated concept is the decay time (τ) of an oscillation: that’s the time it takes for the amplitude of the oscillation to fall by a factor 1/e = 1/2.7182… ≈ 36.8% of the original value.

decay time

The second illustration (below) gives the frequency response curve. That assumes there is a continuous driving force, and we know that the oscillator will react to that driving force by oscillating – after an initial transient – at the same frequency driving force, but its amplitude will be determined by (i) the difference between the frequency of the driving force and the oscillator’s natural frequency (f0) as well as (ii) the damping factor. We will not prove it here, but the ‘peak height’ is equal to the low-frequency response (C) multiplied by the Q of the system, and the peak width is f0 divided by Q.

frequency response

But what is the Q for an atomic oscillator? Well… The Q of any system is the total energy content of the oscillator and the work done (or the energy loss) per radian. [If we define it per cycle, then we need to throw an additional 2π factor in – that’s just how the Q has been defined !] So we write:

Q = W/(dW/dΦ)

Now, dW/dΦ = (dW/dt)/(dΦ/dt) = (dW/dt)/ω, so Q = ωW/(dW/dt), which can be re-written as the first-order differential equation dW/dt = -(ω/Q)W. Now, that equation has the general solution

W = W0eωt/Q, with W0 the initial energy.

Using our energy equation – and assuming that our atomic oscillators are radiating at some natural (angular) frequency ω0, which we’ll relate to the wavelength λ = 2πc/ω0 – we can calculate the Q. But what do we use for W0? Well… The kinetic energy of the oscillator is mv2/2. Assuming the displacement x has that nice sinusoidal shape, we get mω2x02/4 for the mean kinetic energy, which we have to double to get the total energy (remember that, on average, the total energy of an oscillator is half kinetic, and half potential), so then we get W = mω2x02/2. Using me (the electron mass) for m, we can then plug it all in, divide and cancel what we need to divide and cancel, and we get the grand result:

 Q = Q = ωW/(dW/dt) = 3λmec2/4πe2 or 1/Q =  4πe2/3λmec2

The second form is preferred because it allows substituting e2/mec2 for yet another ‘historical’ constant, referred to as the classical electron radius r0 = e2/mec2 = 2.82×10–15 m. However, that’s yet another diversion, and I’ll try to spare you here. Indeed, we’re almost done so let’s sprint to the finish.

So all we need now is a value for λ. Well… Let’s just take one: a sodium atom emits light with a wavelength of approximately 600 nanometer. Yes, that’s the yellow-orange light emitted by low-pressure sodium-vapor lamps used for street lighting. So that’s a typical wavelength and we get a Q equal to

Q = 3λ/4πr0 ≈ 5×107.

So what? Well… This is great ! We can finally calculate things like the decay time now – for our atomic oscillators ! Now, there is a formula for the decay time: τ = 2Q/ω. This is a formula we can also write in terms of the wavelength λ because ω and λ are related through the speed of light: ω = 2πf = 2πc/λ. So we can write τ = Qλ/πc. In this case, we get τ ≈ 3.2×10–8 seconds (but please do check my calculation). It seems that that corresponds to experimental fact: light, as emitted by all these atomic oscillators, basically consists of very sharp pulses: one atom emits a pulse, and then another one takes over, etcetera. That’s why light is usually unpolarized – I’ll talk about that in a minute.

In addition, we can calculate the peak width Δf = f0/Q. In fact, we’ll not use frequency but wavelength: Δλ = λ/Q = 1.2×10–14. This also seems to correspond with the width of the so-called spectral lines of light-emitting sodium atoms.

Isn’t this great? With a few simple formulas, we’ve illustrated the strange world of atomic oscillators and electromagnetic radiation. I’ve covered an awful lot of ground here, I feel.

There is one more “loose end” which I’ll quickly throw in here. It’s the topic of polarization – as promised – and then we’re done really. I promise. 🙂

Polarization

One of the properties of the ‘law’ of radiation as derived by Feynman is that the direction of the electric field is perpendicular to the line of sight. That’s – quite simply – because it’s only the component ax perpendicular to the line of sight that’s important. So if we have a source – i.e. an accelerating electric charge – moving in and out straight at us, we will not get a signal.

That being said, while the field is perpendicular to the line of sight – which we identify with the z-axis – the field still can have two components and, in fact, it is likely to have two components: an x- and a y-component. We show a beam with such x- and y-component below (so that beam ‘vibrates’ not only up and down but also sideways), and we assume it hits an atom – i.e. an electron oscillator – which, in turn, emits another beam. As you can see from the illustration, the light scattered at right angles to the incident beam will only ‘vibrate’ up and down: not sideways. We call such light ‘polarized’. The physical explanation is quite obvious from the illustration below: the motion of the electron oscillator is perpendicular to the z-direction only and, therefore, any radiation measured from a direction that’s perpendicular to that z-axis must be ‘plane polarized’ indeed.

Light can be polarized in various ways. In fact, if we have a ‘regular’ wave, it will always be polarized. With ‘regular’, we mean that both the vibration in the x- and y-direction will be sinusoidal: the phase may or may not be the same, that doesn’t matter. But both vibrations need to be sinusoidal. In that case, there are two broad possibilities: either the oscillations are ‘in phase’, or they are not. When the x- and y-vibrations are in phase, then the superposition of their amplitudes will look like the examples below. You should imagine here that you are looking at the end of the electric field vector, and so the electric field oscillates on a straight line.

Polarization in phase

When they are in phase, it means that the frequency of oscillation is the same. Now, that may not be the case, as shown in the examples below. However, even these ‘out of phase’ x- and y-vibrations produce a nice ellipsoidal motion and, hence, such beams are referred to as being ‘elliptically polarized’.

Polarization out of phase

So what’s unpolarized light then? Well… That’s light that’s – quite simply – not polarized. So it’s irregular. Most light is unpolarized because it was emitted by electron oscillators. From what I explained above, you now know that such electron oscillators emit light during a fraction of a second only – the window is of the order of 10-–8 seconds only actually – so that’s very short indeed (a hundred millionth of a second!). It’s a sharp little pulse basically, quickly followed by another pulse as another atom takes over, and then another and so on. So the light that’s being emitted cannot have a steady phase for more than 10-8 seconds. In that sense, such light will be ‘out of phase’.

In fact, that’s why two light sources don’t interfere. Indeed, we’ve been talking about interference effects all of the time but you may have noticed 🙂 that – in daily life – the combined intensity of light from two sources is just the sum of the intensities of the two lights: we don’t see interference. So there you are. [Now you will, of course, wonder why physics studies phenomena we don’t observe in daily life – but that’s an entirely different matter, and you would actually not be reading this post if you thought that.]

Now, with polarization, we can explain a number of things that we couldn’t explain before. One of them is birefringence: a material may have a different index of refraction depending on whether the light is linearly polarized in one direction rather than another, which explains why the amusing property of Iceland spar, a crystal that doubles the image of anything seen through it. But we won’t play with that here. You can look that up yourself.

Refraction and Dispersion of Light

In this post, we go right at the heart of classical physics. It’s going to be a very long post – and a very difficult one – but it will really give you a good ‘feel’ of what classical physics is all about. To understand classical physics – in order to compare it, later, with quantum mechanics – it’s essential, indeed, to try to follow the math in order to get a good feel for what ‘fields’ and ‘charges’ and ‘atomic oscillators’ actually represent.

As for the topic of this post itself, we’re going to look at refraction again: light gets dispersed as it travels from one medium to another, as illustrated below. 

Prism_rainbow_schema

Dispersion literally means “distribution over a wide area”, and so that’s what happens as the light travels through the prism: the various frequencies (i.e. the various colors that make up natural ‘white’ light) are being separated out over slightly different angles. In physics jargon, we say that the index of refraction depends on the frequency of the wave – but so we could also say that the breaking angle depends on the color. But that sounds less scientific, of course. In any case, it’s good to get the terminology right. Generally speaking, the term refraction (as opposed to dispersion) is used to refer to the bending (or ‘breaking’) of light of a specific frequency only, i.e. monochromatic light, as shown in the photograph below. […] OK. We’re all set now.

Refraction_photo

It is interesting to note that the photograph above shows how the monochromatic light is actually being obtained: if you look carefully, you’ll see two secondary beams on the left-hand side (with an intensity that is much less than the central beam – barely visible in fact). That suggests that the original light source was sent through a diffraction grating designed to filter only one frequency out of the original light beam. That beam is then sent through a bloc of transparent material (plastic in this case) and comes out again, but displaced parallel to itself. So the block of plastics ‘offsets’ the beam. So how do we explain that in classical physics?

The index of refraction and the dispersion equation

As I mentioned in my previous post, the Greeks had already found out, experimentally, what the index of refraction was. To be more precise, they had measured the θ1 and θ2 – depicted below – for light going from air to water. For example, if the angle in air (θ1) is 20°, then the angle in the water (θ2) will be 15°. It the angle in air is 70°, then the angle in the water will be 45°.   

Refraction_at_interface

Of course, it should be noted that a lot of the light will also be reflected from the water surface (yes, imagine the romance of the image of the moon reflected on the surface of glacial lake while you’re feeling damn cold) – but so that’s a phenomenon which is better  explained by introducing probability amplitudes, and looking at light as a bundle of photons, which we will not do here. I did that in previous posts, and so here, we will just acknowledge that there is a reflected beam but not say anything about it.

In any case, we should go step by step, and I am not doing that right now. Let’s first define the index of refraction. It is a number n which relates the angles above through the following relationship, which is referred to as Snell’s Law:

sinθ1 = n sinθ2

Using the numbers given above, we get: sin(20°) = n sin(15°), and sin(70°) = n sin(45°), so n must be equal to n = sin(20°)/sin(15°)  = sin(70°)/sin(45°) ≈ 1.33. Just for the record, Willibrord Snell was a medieval Dutch astronomer but, according to Wikipedia, some smart Persian, Ibn Sahl, had already jotted this down in a treatise – “On Burning Mirrors and Lenses” – while he was serving the Abbasid court of Baghdad, back in 984, i.e. more than a thousand years ago! What to say? It was obviously a time when the Sunni-Shia divide did not matter, and Arabs and ‘Persians’ were leading civilization. I guess I should just salute the Islamic Golden Age here, regret the time lost during Europe’s Dark Ages and, most importantly, regret where Baghdad is right now ! And, as for the ‘burning’ adjective, it just refers to the fact that large convex lenses can concentrate the sun’s rays to a very small area indeed, thereby causing ignition. [It seems that story about Archimedes burning Roman ships with a ‘death ray’ using mirrors – in all likelihood: something that did not happen – fascinated them as well.]

But let’s get back at it. Where were we? Oh – yes – the refraction index. It’s (usually) a positive number written as n = 1 + some other number which may be positive or negative, and which depends on the properties of the material. To be more specific, it depends on the resonant frequencies of the atoms (or, to be precise, I should say: the resonant frequencies of the electrons bound by the atom, because it’s the charges that generate the radiation). Plus a whole bunch of natural constants that we have encountered already, most of which are related to electrons. Let me jot down the formula – and please don’t be scared away now (you can stop a bit later, but not now 🙂 please):

Formula 1

N is just the number of charges (electrons) per unit volume of the material (e.g. the water, or that block of plastic), and qe and m are just the charge and mass of the electron. And then you have that electric constant once again, ε0, and… Well, that’s it ! That’s not too terrible, is it? So the only variables on the right-hand side are ω0 and ω, so that’s (i) the resonant frequency of the material (or the atoms – well, the electrons bound to the nucleus, to be precise, but then you know what I mean and so I hope you’ll allow me to use somewhat less precise language from time to time) and (ii) the frequency of the incoming light.

The equation above is referred to as the dispersion relation. It’s easy to see why: it relates the frequency of the incoming light to the index of refraction which, in turn, determinates that angle θ. So the formula does indeed determine how light gets dispersed, as a function of the frequencies in it, by some medium indeed (glass, air, water,…).

So the objective of this post is to show how we can derive that dispersion relation using classical physics only. As usual, I’ll follow Feynman – arguably the best physics teacher ever. 🙂 Let me warn you though: it is not a simple thing to do. However, as mentioned above, it goes to the heart of the “classical world view” in physics and so I do think it’s worth the trouble. Before we get going, however, let’s look at the properties of that formula above, and relate it some experimental facts, in order to make sure we more or less understand what it is that we are trying to understand. 🙂

First, we should note that the index of refraction has nothing to do with transparency. In fact, throughout this post, we’ll assume that we’re looking at very transparent materials only, i.e. materials that do not absorb the electromagnetic radiation that tries to go through them, or only absorb it a tiny little bit. In reality, we will have, of course, some – or, in the case of opaque (i.e. non-transparent) materials, a lot – of absorption going on, but so we will deal with that later. So, let me repeat: the index of refraction has nothing to do with transparency. A material can have a (very) high index of refraction but be fully transparent. In fact, diamond is a case in point: it has one of the highest indexes of refraction (2.42) of any material that’s naturally available, but it’s – obviously – perfectly transparent. [In case you’re interested in jewellery, the refraction index of its most popular substitute, cubic zirconia, comes very close (2.15-2.18) and, moreover, zirconia actually works better as a prism, so its disperses light better than diamond, which is why it reflects more colors. Hence, real diamond actually sparkles less than zirconia! So don’t be fooled! :-)]

Second, it’s obvious that the index of refraction depends on two variables indeed: the natural, or resonant frequency, ω0, and the frequency ω, which is the frequency of the incoming light. For most of the ordinary gases, including those that make up air (i.e. nitrogen (78%) and oxygen (21%), plus some vapor (averaging 1%) and the so-called noble gas argon (0.93%) – noble because, just like helium and neon, it’s colorless, odorless and doesn’t react easily), the natural frequencies of the electron oscillators are close to the frequency of ultraviolet light. [The greenhouse gases are a different story – which is why we’re in trouble on this planet. Anyway…] So that’s why air absorbs most of the UV, especially the cancer-causing ultraviolet-C light (UVC), which is formally classified as a carcinogen by the World Health Organization. The wavelength of UVC light is 100 to 300 nanometer – as opposed to visible light, which has a wavelength ranging from 400 to 700 nm – and, hence, the frequency of UV light is in the 1000 to 3000 Teraherz range (1 THz = 1012 oscillations per second) – as opposed to visible light, which has a frequency in the range of 400 to 800 THz. So, because we’re squaring those frequencies in the formula, ω2 can then be disregarded in comparison with ω02: for example, 15002 = 2,250,000 and that’s not very different from 15002 – 5002 = 2,000,000. Hence, if we leave the ω2 out, we are still dividing by a very large number. That’s why n is very close to one for visible light entering the atmosphere from space (i.e. the vacuum). Its value is, in fact, around 1.000292 for incoming light with a wavelength of 589.3 nm (the odd value is the mean of so-called sodium D light, a pretty common yellow-orange light (street lights!), so that’s why it’s used as a reference value – however, don’t worry about it).

That being said, while the n of air is close to one for all visible light, the index is still slightly higher for blue light as compared to red light, and that’s why the sky is blue, except in the morning and evening, when it’s reddish. Indeed, the illustration below is a bit silly, but it gives you the idea. [I took this from http://mathdept.ucr.edu/ so I’ll refer you to that for the full narrative on that. :-)]

blue_sky

Where are we in this story? Oh… Yes. Two frequencies. So we should also note that – because we have two frequency variables – it also makes sense to talk about, for instance, the index of refraction of graphite (i.e. carbon in its most natural occurrence, like in coal) for x-rays. Indeed, coal is definitely not transparent to visible light (that has to do with the absorption phenomenon, which we’ll discuss later) but it is very ‘transparent’ to x-rays. Hence, we can talk about how graphite bends x-rays, for example. In fact, the frequency of x-rays is much higher than the natural frequency of the carbon atoms and, hence, in this case we can neglect the w02 factor, so we get a denominator that is negative (because only the -w2 remains relevant), so we get a refraction index that is (a bit) smaller than 1. [Of course, our body is transparent to x-rays too – to a large extent – but in different degrees, and that’s why we can take x-ray photographs of, for example, a broken rib or leg.]

OK. […] So that’s just to note that we can have a refraction index that is smaller than one and that’s not ‘anomalous’ – even if that’s a historical term that has survived. 

Finally, last but not least as they say, you may have heard that scientists and engineers have managed to construct so-called negative index metamaterials. That matter is (much) more complicated than you might think, however, and so I’ll refer you to the Web if you want to find out more about that.

Light going through a glass plate: the classical idea

OK. We’re now ready to crack the nut. We’ll closely follow my ‘Great Teacher’ Feynman (Lectures, Vol. I-31) as he derives that formula above. Let me warn you again: the narrative below is quite complicated, but really worth the trouble – I think. The key to it all is the illustration below. The idea is that we have some electromagnetic radiation emanating from a far-away source hitting a glass plate – or whatever other transparent material. [Of course, nothing is to scale here: it’s just to make sure you get the theoretical set-up.] 

radiation and transparent sheet

So, as I explained in my previous post, the source creates an oscillating electromagnetic field which will shake the electrons up and down in the glass plate, and then these shaking electrons will generate their own waves. So we look at the glass as an assembly of little “optical-frequency radio stations” indeed, that are all driven with a given phase. It creates two new waves: one reflecting back, and one modifying the original field.

Let’s be more precise. What do we have here? First, we have the field that’s generated by the source, which is denoted by Es above. Then we have the “reflected” wave (or field – not much difference in practice), so that’s Eb. As mentioned above, this is the classical theory, not the quantum-electrodynamical one, so we won’t say anything about this reflection really: just note that the classical theory acknowledges that some of the light is effectively being reflected.

OK. Now we go to the other side of the glass. What do we expect to see there? If we would not have the glass plate in-between, we’d have the same Es field obviously, but so we don’t: there is a glass plate. 🙂 Hence, the “transmitted” wave, or the field that’s arriving at point P let’s say, will be different than Es. Feynman writes it as Es + Ea

Hmm… OK. So what can we say about that? Not easy…

The index of refraction and the apparent speed of light in a medium

Snell’s Law – or Ibn Sahl’s Law – was re-formulated, by a 17th century French lawyer with an interesting in math and physics, Pierre de Fermat, as the Principle of Least Time. It is a way of looking at things really – but it’s very confusing actually. Fermat assumed that light traveling through a medium (water or glass, for instance) would travel slower, by a certain factor n, which – indeed – turns out to be the index of refraction. But let’s not run before we can walk. The Principle is illustrated below. If light has to travel from point S (the source) to point D (the detector), then the fastest way is not the straight line from S to D, but the broken S-L-D line. Now, I won’t go into the geometry of this but, with a bit of trial and error, you can verify for yourself that it turns out that the factor n will indeed be the same factor n as the one which was ‘discovered’ by Ibn Sahl: sinθ1 = n sinθ2.

Least time principle

What we have then, is that the apparent speed of the wave in the glass plate that we’re considering here will be equal to v = c/n. The apparent speed? So does that mean it is not the real speed? Hmm… That’s actually the crux of the matter. The answer is: yes and no. What? An ambiguous answer in physics? Yes. It’s ambiguous indeed. What’s the speed of a wave? We mentioned above that n could be smaller than one. Hence, in that case, we’d have a wave traveling faster than the speed of light. How can we make sense of that?

We can make sense of that by noting that the wave crests or nodes may be traveling faster than c, but that the wave itself – as a signal – cannot travel faster than light. It’s related to what we said about the difference between the group and phase velocity of a wave. The phase velocity – i.e. the nodes, which are mathematical points only – can travel faster than light, but the signal as such, i.e. the wave envelope in the illustration below, cannot.

Wave_group (1)

What is happening really is the following. A wave will hit one of these electron oscillators and start a so-called transient, i.e. a temporary response preceding the ‘steady state’ solution (which is not steady but dynamic – confusing language once again – so sorry!). So the transient settles down after a while and then we have an equilibrium (or steady state) oscillation which is likely to be out of phase with the driving field. That’s because there is damping: the electron oscillators resist before they go along with the driving force (and they continue to put up resistance, so the oscillation will die out when the driving force stops!). The illustration below shows how it works for the various cases:

delay and advance of phase

In case (b), the phase of the transmitted wave will appear to be delayed, which results in the wave appearing to travel slower, because the distance between the wave crests, i.e. the wavelength λ, is being shortened. In case (c), it’s the other way around: the phase appears to be advanced, which translated into a bigger distance between wave crests, or a lengthening of the wavelength, which translates into an apparent higher speed of the transmitted wave.

So here we just have a mathematical relationship between the (apparent) speed of a wave and its wavelength. The wavelength is the (apparent) speed of the wave (that’s the speed with which the nodes of the wave travel through space, or the phase velocity) divided by the frequency: λ = vp/f. However, from the illustration above, it is obvious that the signal, i.e. the start of the wave, is not earlier – or later – for either wave (b) and (c). In fact, the start of the wave, in time, is exactly the same for all three cases. Hence, the electromagnetic signal travels at the same speed c, always.

While this may seem obvious, it’s quite confusing, and therefore I’ll insert one more illustration below. What happens when the various wave fronts of the traveling field hit the glass plate (coming from the top-left hand corner), let’s say at time t = t0, as shown below, is that the wave crests will have the same spacing along the surface. That’s obvious because we have a regular wave with a fixed frequency and, hence, a fixed wavelength λ0, here. Now, these wave crests must also travel together as the wave continues its journey through the glass, which is what is shown by the red and green arrows below: they indicate where the wave crest is after one and two periods (T and 2T) respectively.

Wave crest and frequency

To understand what’s going on, you should note that the frequency f of the wave that is going through the glass sheet and, hence, its period T, has not changed. Indeed, the driven oscillation, which was illustrated for the two possible cases above (n > 1 and n < 1), after the transient has settled down, has the same frequency (f) as the driving source. It must. Always. That being said, the driven oscillation does have that phase delay (remember: we’re in the (b) case here, but we can make a similar analysis for the (c) case). In practice, that means that the (shortest) distance between the crests of the wave fronts at time t = t0 and the crests at time t0 + T will be smaller. Now, the (shortest) distance between the crests of a wave is, obviously, the wavelength divided by the frequency: λ = vp/f, with vp the speed of propagation, i.e. the phase velocity, of the wave, and f = 1/T. [The frequency f is the reciprocal of the period T – always. When studying physics, I found out it’s useful to keep track of a few relationships that hold always, and so this is one of them. :-)]

Now, the frequency is the same, but so the wavelength is shortened as the wave travels through the various layers of electron oscillators, each causing a delay of phase – and, hence, a shortening of the wavelength, as shown above. But, if f is the same, and the wavelength is shorter, then vp cannot be equal to the speed of the incoming light, so vp ≠ c. The apparent speed of the wave traveling through the glass, and the associated shortening of the wavelength, can be calculated using Snell’s Law. Indeed, knowing that n ≈ 1.33, we can calculate the apparent speed of light through the glass as v = c/n  ≈ 0.75c and, therefore, we can calculate the wavelength of the wave in the glass l as λ = 0.75λ0.

OK. I’ve been way too lengthy here. Let’s sum it all up:

  • The field in the glass sheet must have the shape that’s depicted above: there is no other way. So that means the direction of ‘propagation’ has been changed. As mentioned above, however, the direction of propagation is a ‘mathematical’ property of the field: it’s not the speed of the ‘signal’.
  • Because the direction of propagation is normal to the wave front, it implies that the bending of light rays comes about because the effective speed of the waves is different in the various materials or, to be even more precise, because the electron oscillators cause a delay of phase.
  • While the speed and direction of propagation of the wave, i.e. the phase velocity, accurately describes the behavior of the field, it is not the speed with which the signal is traveling (see above). That is why it can be larger or smaller than c, and so it should not raise any eyebrow. For x-rays in particular, we have a refractive index smaller than one. [It’s only slightly less than one, though, and, hence, x-ray images still have a very good resolution. So don’t worry about your doctor getting a bad image of your broken leg. 🙂 In case you want to know more about this: just Google x-ray optics, and you’ll find loads of information. :-)]  

Calculating the field

Are you still there? Probably not. If you are, I am afraid you won’t be there ten or twenty minutes from now. Indeed, you ain’t done nothing yet. All of the above was just setting the stage: we’re now ready for the pièce de résistance, as they say in French. We’re back at that illustration of the glass plate and the various fields in front and behind the plate. So we have electron oscillators in the glass plate. Indeed, as Feynman notes: “As far as problems involving light are concerned, the electrons behave as though they were held by springs. So we shall suppose that the electrons have a linear restoring force which, together with their mass m, makes them behave like little oscillators, with a resonant frequency ω0.”

So here we go:

1. From everything I wrote about oscillators in previous posts, you should remember that the equation for this motion can be written as m[d2x/dt2 + ω02) = F. That’s just Newton’s Law. Now, the driving force F comes from the electric field and will be equal to F = qeEs.

Now, we assume that we can chose the origin of time (i.e. the moment from which we start counting) such that the field Es = E0cos(ωt). To make calculations easier, we look at this as the real part of a complex function Es = E0eiωt. So we get:

m[d2x/dt2 + ω02] = qeE0eiωt

We’ve solved this before: its solution is x = x0eiωt. We can just substitute this in the equation above to find x0 (just substitute and take the first- and then second-order derivative of x indeed): x0 = qeE0/m(ω022). That, then, gives us the first piece in this lengthy derivation:

x = qeE0eiωt/m(ω02 2)

Just to make sure you understand what we’re doing: this piece gives us the motion of the electrons in the plate. That’s all.

2. Now, we need an equation for the field produced by a plane of oscillating charges, because that’s what we’ve got here: a plate or a plane of oscillating charges. That’s a complicated derivation in its own, which I won’t do there. I’ll just refer to another chapter of Feynman’s Lectures (Vol. I-30-7) and give you the solution for it (if I wouldn’t do that, this post would be even longer than it already is):

Formula 2

This formula introduces just one new variable, η, which is the number of charges per unit area of the plate (as opposed to N, which was the number of charges per unit volume in the plate), so that’s quite straightforward. Less straightforward is the formula itself: this formula says that the magnitude of the field is proportional to the velocity of the charges at time t – z/c, with z the shortest distance from P to the plane of charges. That’s a bit odd, actually, but so that’s the way it comes out: “a rather simple formula”, as Feynman puts it.

In any case, let’s use it. Differentiating x to get the velocity of the charges, and plugging it into the formula above yields:

Formula 3

Note that this is only Ea, the additional field generated by the oscillating charges in the glass plate. To get the total electric field at P, we still have to add Es, i.e. the field generated by the source itself. This may seem odd, because you may think that the glass plate sort of ‘shields’ the original field but, no, as Feynman puts it: “The total electric field in any physical circumstance is the sum of the fields from all the charges in the universe.”

3. As mentioned above, z is the distance from P to the plate. Let’s look at the set-up here once again. The transmitted wave, or Eafter the plate as we shall note it, consists of two components: Es and Ea. Es here will be equal to (the real part of) Es = E0eiω(t-z/c). Why t – z/c instead of just t? Well… We’re looking at Es here as measured in P, not at Es at the glass plate itself.   

radiation and transparent sheet

Now, we know that the wave ‘travels slower’ through the glass plate (in the sense that its phase velocity is less, as should be clear from the rather lengthy explanation on phase delay above, or – if n would be greater than one – a phase advance). So if the glass plate is of thickness Δz, and the phase velocity is is v = c/n, then the time it will take to travel through the glass plate will be Δz/(c/n) instead of Δz/c (speed is distance divided by time and, hence, time = distance divided by speed). So the additional time that is needed is Δt = Δz/(c/n) – Δz/c = nΔz/c – Δz/c = (n-1)Δz/c. That, then, implies that Eafter the plate is equal to a rather monstrously looking expression:    

Eafter plate = E0eiω[t (n1)Δz/c z/c) = eiω(n1)Δz/c)E0eiω(t z/c)

We get this by just substituting t for t – Δt.

So what? Well… We have a product of two complex numbers here and so we know that this involves adding angles – or substracting angles in this case, rather, because we’ve got a minus sign in the exponent of the first factor. So, all that we are saying here is that the insertion of the glass plate retards the phase of the field with an amount equal to w(n-1)Δz/c. What about that sum Eafter the plate = Es + Ea that we were supposed to get?

Well… We’ll use the formula for a first-order (linear) approximation of an exponential once again: ex ≈ 1 + x. Yes. We can do that because Δz is assumed to be very small, infinitesimally small in fact. [If it is not, then we’ll just have to assume that the plate consists of a lot of very thin plates.] So we can write that eiω(n-1)Δz/c) = 1 – iω(n-1)Δz/c, and then we, finally, get that sum we wanted:

Eafter plate = E0eiω[t z/c) iω(n-1)Δz·E0eiω(t z/c)/c

The first term is the original Es field, and the second term is the Ea field. Geometrically, they can be represented as follows:

Addition of fields

Why is Ea perpendicular to Es? Well… Look at the –i = 1/i factor. Multiplication with –i amounts to a clockwise rotation by 90°, and then just note that the magnitude of the vector must be small because of the ω(n-1)Δz/c factor.  

4. By now, you’ve either stopped reading (most probably) or, else, you wonder what I am getting at. Well… We have two formulas for Ea now:

Formula 4

and Ea = – iω(n-1)Δz·E0eiω(t – z/c)/c

Equating both yields:

Formula 5

But η, the number of charges per unit area, must be equal to NΔz, with N the number of charges per unit volume. Substituting and then cancelling the Δz finally gives us the formula we wanted, and that’s the classical dispersion relation whose properties we explored above:

Formula 6

Absorption and the absorption index

The model we used to explain the index of refraction had electron oscillators at its center. In the analysis we did, we did not introduce any damping factor. That’s obviously not correct: it means that a glass plate, once it had illuminated, would continue to emit radiation, because the electrons would oscillate forever. When introducing damping, the denominator in our dispersion relation becomes m(ω02 – ω2 + iγω), instead of m(ω02 – ω2). We derived this in our posts on oscillators. What it means is that the oscillator continues to oscillate with the same frequency as the driving force (i.e. not its natural frequency) – so that doesn’t change – but that there is an envelope curve, ensuring the oscillation dies out when the driving force is no longer being applied. The γ factor is the damping factor and, hence, determines how fast the damping happens.

We can see what it means by writing the complex index of refraction as n = n’ – in’’, with n’ and n’’ real numbers, describing the real and imaginary part of n respectively. Putting that complex n in the equation for the electric field behind the plate yields:

Eafter plate = eωn’’Δz/ceiω(n’1)Δz/cE0eiω(t z/c)

This is the same formula that we had derived already, but so we have an extra exponential factor: eωn’’Δz/c. It’s an exponential factor with a real exponent, because there were two i‘s that cancelled. The e-x function has a familiar shape (see below): e-x is 1 for x = 0, and between 0 and 1 for any value in-between. That value will depend on the thickness of the glass sheet. Hence, it is obvious that the glass sheet weakens the wave as it travels through it. Hence, the wave must also come out with less energy (the energy being proportional to the square of the amplitude). That’s no surprise: the damping we put in for the electron oscillators is a friction force and, hence, must cause a loss of energy.

Note that it is the n’’ term – i.e. the imaginary part of the refractive index n – that determines the degree of absorption (or attenuation, if you want). Hence, n’’ is usually referred to as the “absorption index”.

The complete dispersion relation

We need to add one more thing in order to get a fully complete dispersion relation. It’s the last thing: then we have a formula which can really be used to describe real-life phenomena. The one thing we need to add is that atoms have several resonant frequencies – even an atom with only one electron, like hydrogen ! In addition, we’ll usually want to take into account the fact that a ‘material’ actually consists of various chemical substances, so that’s another reason to consider more than one resonant frequency. The formula is easily derived from our first formula (see the previous post), when we assumed there was only one resonant frequency. Indeed, when we have Nk electrons per unit of volume, whose natural frequency is ωk and whose damping factor is γk, then we can just add the contributions of all oscillators and write:

Formula 7

The index described by this formula yields the following curve:

Several resonant frequencies

So we have a curve with a positive slope, and a value n > 1, for most frequencies, except for a very small range of ω’s for which the slope is negative, and for which the index of refraction has a value n < 1. As Feynman notes, these ω’s– and the negative slope – is sometimes referred to as ‘anomalous’ dispersion but, in fact, there’s nothing ‘abnormal’ about it.

The interesting thing is the iγkω term in the denominator, i.e. the imaginary component of the index, and how that compares with the (real) “resonance term” ωk2– ω2. If the resonance term becomes very small compared to iγkω, then the index will become almost completely imaginary, which means that the absorption effect becomes dominant. We can see that effect in the spectrum of light that we receive from the sun: there are ‘dark lines’, i.e. frequencies that have been strongly absorbed at the resonant frequencies of the atoms in the Sun and its ‘atmosphere’, and that allows us to actually tell what the Sun’s ‘atmosphere’ (or that of other stars) actually consists of.      

So… There we are. I am aware of the fact that this has been the longest post of all I’ve written. I apologize. But so it’s quite complete now. The only piece that’s missing is something on energy and, perhaps, some more detail on these electron oscillators. But I don’t think that’s so essential. It’s time to move on to another topic, I think.