The Aharonov-Bohm effect

This title sounds very exciting. It is – or was, I should say – one of these things I thought I would never ever understand, until I started studying physics, that is. 🙂

Having said that, there is – incidentally – nothing very special about the Aharonov-Bohm effect. As Feynman puts it: “The theory was known from the beginning of quantum mechanics in 1926. […] The implication was there all the time, but no one paid attention to it.”

To be fair, he also admits the experiment itself – proving the effect – is “very, very difficult”, which is why the first experiment that claimed to confirm the predicted effect was set up in 1960 only. In fact, some claim the results of that experiment were ambiguous, and that it was only in 1986, with the experiment of Akira Tonomura, that the Aharonov-Bohm effect was unambiguously demonstrated. So what is it about?

In essence, it proves the reality of the vector potential—and of the (related) magnetic field. What do we mean with a real field? To put it simply, a real field cannot act on some particle from a distance through some kind of spooky ‘action-at-a-distance’: real fields must be specified at the position of the particle itself and describe what happens there. Now you’ll immediately wonder: so what’s a non-real field? Well… Some field that does act through some kind of spooky ‘action-at-a-distance.’ As for an example… Well… I can’t give you one because we’ve only been discussing real fields so far. 🙂

So it’s about what a magnetic (or an electric) field does in terms influencing motion and/or quantum-mechanical amplitudes. In fact, we discussed this matter  quite a while ago (check my 2015 post on it). Now, I don’t want to re-write that post, but let me just remind you of the essentials. The two equations for the magnetic field (B) in Maxwell’s set of four equations (the two others specify the electric field E) are: (1) B = 0 and (2) c2×B = j0 + ∂E/ ∂t. Now, you can temporarily forget about the second equation, but you should note that the B = 0 equation is always true (unlike the ×E = 0 expression, which is true for electrostatics only, when there are no moving charges). So it says that the divergence of B is zero, always.

Now, from our posts on vector calculus, you may or may not remember that the divergence of the curl of a vector field is always zero. We wrote: div (curl A) = •(×A) = 0, always. Now, there is another theorem that we can now apply, which says the following: if the divergence of a vector field, say D, is zero – so if D = 0, then D will be the curl of some other vector field C, so we can write: D×C. When we now apply this to our B = 0 equation, we can confidently state the following: 

If B = 0, then there is an A such that B×A

We can also write this as follows:·B = ·(×A) = 0 and, hence, B×A. Now, it’s this vector field A that is referred to as the (magnetic) vector potential, and so that’s what we want to talk about here. As a start, it may be good to write out all of the components of our B×A vector:

formula for B

In that 2015 post, I answered the question as to why we’d need this new vector field in a way that wasn’t very truthful: I just said that, in many situations, it would be more convenient – from a mathematical point of view, that is – to first find A, and then calculate the derivatives above to get B.

Now, Feynman says the following about this argument in his Lecture on the topic: “It is true that in many complex problems it is easier to work with A, but it would be hard to argue that this ease of technique would justify making you learn about one more vector field. […] We have introduced A because it does have an important physical significance: it is a real physical field.” Let us follow his argument here.

Quantum-mechanical interference effects

Let us first remind ourselves of the quintessential electron interference experiment illustrated below. [For a much more modern rendering of this experiment, check out the  Tout Est Quantique video on it. It’s much more amusing than my rather dry exposé here, but it doesn’t give you the math.]

interference

We have electrons, all of (nearly) the same energy, which leave the source – one by one – and travel towards a wall with two narrow slits. Beyond the wall is a backstop with a movable detector which measures the rate, which we call I, at which electrons arrive at a small region of the backstop at the distance x from the axis of symmetry. The rate (or intensityI is proportional to the probability that an individual electron that leaves the source will reach that region of the backstop. This probability has the complicated-looking distribution shown in the illustration, which we understand is due to the interference of two amplitudes, one from each slit. So we associate the two trajectories with two amplitudes, which Feynman writes as A1eiΦ1 and A2eiΦ2 respectively.

As usual, Feynman abstracts away from the time variable here because it is, effectively, not relevant: the interference pattern depends on distances and angles only. Having said that, for a good understanding, we should – perhaps – write our two wavefunctions as A1ei(ωt + Φ1and A2ei(ωt + Φ2respectively. The point is: we’ve got two wavefunctions – one for each trajectory – even if it’s only one electron going through the slit: that’s the mystery of quantum mechanics. 🙂 We need to add these waves so as to get the interference effect:

R = A1ei(ωt + Φ1A2ei(ωt + Φ2= [A1eiΦ1 A2eiΦ2eiωt

Now, we know we need to take the absolute square of this thing to get the intensity – or probability (before normalization). The absolute square of a product, is the product of the absolute squares of the factors, and we also know that the absolute square of any complex number is just the product of the same number with its complex conjugate. Hence, the absolute square of the eiωt factor is equal to |eiωt|2 = eiωteiωt = e= 1. So the time-dependent factor doesn’t matter: that’s why we can always abstract away from it. Let us now take the absolute square of the [A1eiΦ1 A2eiΦ2] factor, which we can write as:

|R|= |A1eiΦ1 A2eiΦ2|= (A1eiΦ1 A2eiΦ2)·(A1eiΦ1 A2eiΦ2)

= A1+ A2+ 2·A1·A2·cos(Φ1−Φ2) = A1+ A2+ 2·A1·A2·cosδ with δ = Φ1−Φ2

OK. This is probably going a bit quick, but you should be able to figure it out, especially when remembering that eiΦ eiΦ = 2·cosΦ and cosΦ = cos(−Φ). The point to note is that the intensity is equal to the sum of the intensities of both waves plus a correction factor, which is equal to 2·A1·A2·cos(Φ1−Φ2) and, hence, ranges from −2·A1·A2 to +2·A1·A2. Now, it takes a bit of geometrical wizardry to be able to write the phase difference δ = Φ1−Φas

δ = 2π·a/λ = 2π·(x/L)·d/λ

—but it can be done. 🙂 Well… […] OK. 🙂 Let me quickly help you here by copying another diagram from Feynman – one he uses to derive the formula for the phase difference on arrival between the signals from two oscillators. A1 and A2 are equal here (A1 = A2 = A) so that makes the situation below somewhat simpler to analyze. However, instead, we have the added complication of a phase difference (α) at the origin – which Feynman refers to as an intrinsic relative phasetriangle

When we apply the geometry shown above to our electron passing through the slits, we should, of course, equate α to zero. For the rest, the picture is pretty similar as the two-slit picture. The distance in the two-slit – i.e. the difference in the path lengths for the two trajectories of our electron(s) – is, obviously, equal to the d·sinθ factor in the oscillator picture. Also, because L is huge as compared to x, we may assume that trajectory 1 and 2 are more or less parallel and, importantly, that the triangles in the picture – small and large – are rectangular. Now, trigonometry tells us that sinθ is equal to the ratio of the opposite side of the triangle and the hypotenuse (i.e. the longest side of the rectangular triangle). The opposite side of the triangle is x and, because is very, very small as compared to L, we may approximate the length of the hypotenuse with L. [I know—a lot of approximations here, but… Well… Just go along with it as for now…] Hence, we can equate sinθ to x/L and, therefore, d·x/L. Now we need to calculate the phase difference. How many wavelengths do we have in a? That’s simple: a/λ, i.e. the total distance divided by the wavelength. Now these wavelengths correspond to 2π·aradians (one cycle corresponds to one wavelength which, in turn, corresponds to 2π radians). So we’re done. We’ve got the formula: δ = Φ1−Φ= 2π·a/λ = 2π·(x/L)·d/λ.

Huh? Yes. Just think about it. I need to move on. The point is: when is equal to zero, the two waves are in phase, and the probability will have a maximum. When δ = π, then the waves are out of phase and interfere destructively (cosπ = −1), so the intensity (and, hence, the probability) reaches a minimum. 

So that’s pretty obvious – or should be pretty obvious if you’ve understood some of the basics we presented in this blog. We now move to the non-standard stuff, i.e. the Aharonov-Bohm effect(s).

Interference in the presence of an electromagnetic field

In essence, the Aharonov-Bohm effect is nothing special: it is just a law – two laws, to be precise – that tells us how the phase of our wavefunction changes because of the presence of a magnetic and/or electric field. As such, it is not very different from previous analyses and presentations, such as those showing how amplitudes are affected by a potential − such as an electric potential, or a gravitational field, or a magnetic field − and how they relate to a classical analysis of the situation (see, for example, my November 2015 post on this topic). If anything, it’s just a more systematic approach to the topic and – importantly – an approach centered around the use of the vector potential A (and the electric potential Φ). Let me give you the formulas:

f1

f2

The first formula tells us that the phase of the amplitude for our electron (or whatever charged particle) to arrive at some location via some trajectory is changed by an amount that is equal to the integral of the vector potential along the trajectory times the charge of the particle over Planck’s constant. I know that’s quite a mouthful but just read it a couple of times.

The second formula tells us that, if there’s an electrostatic field, it will produce a phase change given by the negative of the time integral of the (scalar) potential Φ.

These two expressions – taken together – tell us what happens for any electromagnetic field, static or dynamic. In fact, they are really the (two) law(s) replacing the q(v×B) expression in classical mechanics.

So how does it work? Let me further follow Feynman’s treatment of the matter—which analyzes what happens when we’d have some magnetic field in the two-slit experiment (so we assume there’s no electric field: we only look at some magnetic field). We said Φ1 was the phase of the wave along trajectory 1, and Φ2 was the phase of the wave along trajectory 2. Without magnetic field, that is, so B = 0. Now, the (first) formula above tells us that, when the field is switched on, the new phases will be the following:

f3

f4

Hence, the phase difference δ = Φ1−Φwill now be equal to:

f5

Now, we can combine the two integrals into one that goes forward along trajectory 1 and comes back along trajectory 2. We’ll denote this path as 1-2 and write the new integral as follows:

f6

Note that we’re using a notation here which suggests that the 1-2 path is closed, which is… Well… Yet another approximation of the Master. In fact, his assumption that the new 1-2 path is closed proves to be essential in the argument that follows the one we presented above, in which he shows that the inherent arbitrariness in our choice of a vector potential function doesn’t matter, but… Well… I don’t want to get too technical here.

Let me conclude this post by noting we can re-write our grand formula above in terms of the flux of the magnetic field B:

f7

So… Well… That’s it, really. I’ll refer you to Feynman’s Lecture on this matter for a detailed description of the 1960 experiment itself, which involves a magnetized iron whisker that acts like a tiny solenoid—small enough to match the tiny scale of the interference experiment itself. I must warn you though: there is a rather long discussion in that Lecture on the ‘reality’ of the magnetic and the vector potential field which – unlike Feynman’s usual approach to discussions like this – is rather philosophical and partially misinformed, as it assumes there is zero magnetic field outside of a solenoid. That’s true for infinitely long solenoids, but not true for real-life solenoids: if we have some A, then we must also have some B, and vice versa. Hence, if the magnetic field (B) is a real field (in the sense that it cannot act on some particle from a distance through some kind of spooky ‘action-at-a-distance’), then the vector potential A is an equally real field—and vice versa. Feynman admits as much as he concludes his rather lengthy philosophical excursion with the following conclusion (out of which I already quoted one line in my introduction to this post):

“This subject has an interesting history. The theory we have described was known from the beginning of quantum mechanics in 1926. The fact that the vector potential appears in the wave equation of quantum mechanics (called the Schrödinger equation) was obvious from the day it was written. That it cannot be replaced by the magnetic field in any easy way was observed by one man after the other who tried to do so. This is also clear from our example of electrons moving in a region where there is no field and being affected nevertheless. But because in classical mechanics A did not appear to have any direct importance and, furthermore, because it could be changed by adding a gradient, people repeatedly said that the vector potential had no direct physical significance—that only the magnetic and electric fields are “real” even in quantum mechanics. It seems strange in retrospect that no one thought of discussing this experiment until 1956, when Bohm and Aharonov first suggested it and made the whole question crystal clear. The implication was there all the time, but no one paid attention to it. Thus many people were rather shocked when the matter was brought up. That’s why someone thought it would be worthwhile to do the experiment to see if it was really right, even though quantum mechanics, which had been believed for so many years, gave an unequivocal answer. It is interesting that something like this can be around for thirty years but, because of certain prejudices of what is and is not significant, continues to be ignored.”

Well… That’s it, folks! Enough for today! 🙂

Re-visiting the matter wave (II)

My previous post was, once again, littered with formulas – even if I had not intended it to be that way: I want to convey some kind of understanding of what an electron – or any particle at the atomic scale – actually is – with the minimum number of formulas necessary.

We know particles display wave behavior: when an electron beam encounters an obstacle or a slit that is somewhat comparable in size to its wavelength, we’ll observe diffraction, or interference. [I have to insert a quick note on terminology here: the terms diffraction and interference are often used interchangeably, but there is a tendency to use interference when we have more than one wave source and diffraction when there is only one wave source. However, I’ll immediately add that distinction is somewhat artificial. Do we have one or two wave sources in a double-slit experiment? There is one beam but the two slits break it up in two and, hence, we would call it interference. If it’s only one slit, there is also an interference pattern, but the phenomenon will be referred to as diffraction.]

We also know that the wavelength we are talking about it here is not the wavelength of some electromagnetic wave, like light. It’s the wavelength of a de Broglie wave, i.e. a matter wave: such wave is represented by an (oscillating) complex number – so we need to keep track of a real and an imaginary part – representing a so-called probability amplitude Ψ(x, t) whose modulus squared (│Ψ(x, t)│2) is the probability of actually detecting the electron at point x at time t. [The purists will say that complex numbers can’t oscillate – but I am sure you get the idea.]

You should read the phrase above twice: we cannot know where the electron actually is. We can only calculate probabilities (and, of course, compare them with the probabilities we get from experiments). Hence, when the wave function tells us the probability is greatest at point x at time t, then we may be lucky when we actually probe point x at time t and find it there, but it may also not be there. In fact, the probability of finding it exactly at some point x at some definite time t is zero. That’s just a characteristic of such probability density functions: we need to probe some region Δx in some time interval Δt.

If you think that is not very satisfactory, there’s actually a very common-sense explanation that has nothing to do with quantum mechanics: our scientific instruments do not allow us to go beyond a certain scale anyway. Indeed, the resolution of the best electron microscopes, for example, is some 50 picometer (1 pm = 1×10–12 m): that’s small (and resolutions get higher by the year), but so it implies that we are not looking at points – as defined in math that is: so that’s something with zero dimension – but at pixels of size Δx = 50×10–12 m.

The same goes for time. Time is measured by atomic clocks nowadays but even these clocks do ‘tick’, and these ‘ticks’ are discrete. Atomic clocks take advantage of the property of atoms to resonate at extremely consistent frequencies. I’ll say something more about resonance soon – because it’s very relevant for what I am writing about in this post – but, for the moment, just note that, for example, Caesium-133 (which was used to build the first atomic clock) oscillates at 9,192,631,770 cycles per second. In fact, the International Bureau of Standards and Weights re-defined the (time) second in 1967 to correspond to “the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the Caesium-133 atom at rest at a temperature of 0 K.”

Don’t worry about it: the point to note is that when it comes to measuring time, we also have an uncertainty. Now, when using this Caesium-133 atomic clock, this uncertainty would be in the range of ±9.2×10–9 seconds (so that’s nanoseconds: 1 ns = 1×10–9 s), because that’s the rate at which this clock ‘ticks’. However, there are other (much more plausible) ways of measuring time: some of the unstable baryons have lifetimes in the range of a few picoseconds only (1 ps = 1×10–12 s) and the really unstable ones – known as baryon resonances – have lifetimes in the 1×10–22 to 1×10–24 s range. This we can only measure because they leave some trace after these particle collisions in particle accelerators and, because we have some idea about their speed, we can calculate their lifetime from the (limited) distance they travel before disintegrating. The thing to remember is that for time also, we have to make do with time pixels  instead of time points, so there is a Δt as well. [In case you wonder what baryons are: they are particles consisting of three quarks, and the proton and the neutron are the most prominent (and most stable) representatives of this family of particles.]  

So what’s the size of an electron? Well… It depends. We need to distinguish two very different things: (1) the size of the area where we are likely to find the electron, and (2) the size of the electron itself. Let’s start with the latter, because that’s the easiest question to answer: there is a so-called classical electron radius re, which is also known as the Thompson scattering length, which has been calculated as:

r_\mathrm{e} = \frac{1}{4\pi\varepsilon_0}\frac{e^2}{m_{\mathrm{e}} c^2} = 2.817 940 3267(27) \times 10^{-15} \mathrm{m}As for the constants in this formula, you know these by now: the speed of light c, the electron charge e, its mass me, and the permittivity of free space εe. For whatever it’s worth (because you should note that, in quantum mechanics, electrons do not have a size: they are treated as point-like particles, so they have a point charge and zero dimension), that’s small. It’s in the femtometer range (1 fm = 1×10–15 m). You may or may not remember that the size of a proton is in the femtometer range as well – 1.7 fm to be precise – and we had a femtometer size estimate for quarks as well: 0.7 m. So we have the rather remarkable result that the much heavier proton (its rest mass is 938 MeV/csas opposed to only 0.511 MeV MeV/c2, so the proton is 1835 times heavier) is 1.65 times smaller than the electron. That’s something to be explored later: for the moment, we’ll just assume the electron wiggles around a bit more – exactly because it’s lighterHere you just have to note that this ‘classical’ electron radius does measure something: it’s something ‘hard’ and ‘real’ because it scatters, absorbs or deflects photons (and/or other particles). In one of my previous posts, I explained how particle accelerators probe things at the femtometer scale, so I’ll refer you to that post (End of the Road to Reality?) and move on to the next question.

The question concerning the area where we are likely to detect the electron is more interesting in light of the topic of this post (the nature of these matter waves). It is given by that wave function and, from my previous post, you’ll remember that we’re talking the nanometer scale here (1 nm = 1×10–9 m), so that’s a million times larger than the femtometer scale. Indeed, we’ve calculated a de Broglie wavelength of 0.33 nanometer for relatively slow-moving electrons (electrons in orbit), and the slits used in single- or double-slit experiments with electrons are also nanotechnology. In fact, now that we are here, it’s probably good to look at those experiments in detail.

The illustration below relates the actual experimental set-up of a double-slit experiment performed in 2012 to Feynman’s 1965 thought experiment. Indeed, in 1965, the nanotechnology you need for this kind of experiment was not yet available, although the phenomenon of electron diffraction had been confirmed experimentally already in 1925 in the famous Davisson-Germer experiment. [It’s famous not only because electron diffraction was a weird thing to contemplate at the time but also because it confirmed the de Broglie hypothesis only two years after Louis de Broglie had advanced it!]. But so here is the experiment which Feynman thought would never be possible because of technology constraints:

Electron double-slit set-upThe insert in the upper-left corner shows the two slits: they are each 50 nanometer wide (50×10–9 m) and 4 micrometer tall (4×10–6 m). [The thing in the middle of the slits is just a little support. Please do take a few seconds to contemplate the technology behind this feat: 50 nm is 50 millionths of a millimeter. Try to imagine dividing one millimeter in ten, and then one of these tenths in ten again, and again, and once again, again, and again. You just can’t imagine that, because our mind is used to addition/subtraction and – to some extent – with multiplication/division: our mind can’t deal with with exponentiation really – because it’s not a everyday phenomenon.] The second inset (in the upper-right corner) shows the mask that can be moved to close one or both slits partially or completely.

Now, 50 nanometer is 150 times larger than the 0.33 nanometer range we got for ‘our’ electron, but it’s small enough to show diffraction and/or interference. [In fact, in this experiment (done by Bach, Pope, Liou and Batelaan from the University of Nebraska-Lincoln less than two years ago indeed), the beam consisted of electrons with an (average) energy of 600 eV and a de Broglie wavelength of 50 picometer. So that’s like the electrons used in electron microscopes. 50 pm is 6.6 times smaller than the 0.33 nm wavelength we calculated for our low-energy (70 eV) electron – but then the energy and the fact these electrons are guided in electromagnetic fields explain the difference. Let’s go to the results.

The illustration below shows the predicted pattern next to the observed pattern for the two scenarios:

  1. We first close slit 2, let a lot of electrons go through it, and so we get a pattern described by the probability density function P1 = │Φ12. Here we see no interference but a typical diffraction pattern: the intensity follows a more or less normal (i.e. Gaussian) distribution. We then close slit 1 (and open slit 2 again), again let a lot of electrons through, and get a pattern described by the probability density function P2 = │Φ22. So that’s how we get P1 and P2.
  2. We then open both slits, let a whole electrons through, and get according to the pattern described by probability density function P12 = │Φ122, which we get not from adding the probabilities P1 and P2 (hence, P12 ≠  P1 + P2) – as one would expect if electrons would behave like particles – but from adding the probability amplitudes. We have interference, rather than diffraction.

Predicted interference effectBut so what exactly is interfering? Well… The electrons. But that can’t be, can it?

The electrons are obviously particles, as evidenced from the impact they make – one by one – as they hit the screen as shown below. [If you want to know what screen, let me quote the researchers: “The resulting patterns were magnified by an electrostatic quadrupole lens and imaged on a two-dimensional microchannel plate and phosphorus screen, then recorded with a charge-coupled device camera. […] To study the build-up of the diffraction pattern, each electron was localized using a “blob” detection scheme: each detection was replaced by a blob, whose size represents the error in the localization of the detection scheme. The blobs were compiled together to form the electron diffraction patterns.” So there you go.]

Electron blobs

Look carefully at how this interference pattern becomes ‘reality’ as the electrons hit the screen one by one. And then say it: WAW ! 

Indeed, as predicted by Feynman (and any other physics professor at the time), even if the electrons go through the slits one by one, they will interfere – with themselves so to speak. [In case you wonder if these electrons really went through one by one, let me quote the researchers once again: “The electron source’s intensity was reduced so that the electron detection rate in the pattern was about 1 Hz. At this rate and kinetic energy, the average distance between consecutive electrons was 2.3 × 106 meters. This ensures that only one electron is present in the 1 meter long system at any one time, thus eliminating electron-electron interactions.” You don’t need to be a scientist or engineer to understand that, isn’t it?]

While this is very spooky, I have not seen any better way to describe the reality of the de Broglie wave: the particle is not some point-like thing but a matter wave, as evidenced from the fact that it does interfere with itself when forced to move through two slits – or through one slit, as evidenced by the diffraction patterns built up in this experiment when closing one of the two slits: the electrons went through one by one as well!

But so how does it relate to the characteristics of that wave packet which I described in my previous post? Let me sum up the salient conclusions from that discussion:

  1. The wavelength λ of a wave packet is calculated directly from the momentum by using de Broglie‘s second relation: λ = h/p. In this case, the wavelength of the electrons averaged 50 picometer. That’s relatively small as compared to the width of the slit (50 nm) – a thousand times smaller actually! – but, as evidenced by the experiment, it’s small enough to show the ‘reality’ of the de Broglie wave.
  2. From a math point (but, of course, Nature does not care about our math), we can decompose the wave packet in a finite or infinite number of component waves. Such decomposition is referred to, in the first case (finite number of composite waves or discrete calculus) as a Fourier analysis, or, in the second case, as a Fourier transform. A Fourier transform maps our (continuous) wave function, Ψ(x), to a (continuous) wave function in the momentum space, which we noted as φ(p). [In fact, we noted it as Φ(p) but I don’t want to create confusion with the Φ symbol used in the experiment, which is actually the wave function in space, so Ψ(x) is Φ(x) in the experiment – if you know what I mean.] The point to note is that uncertainty about momentum is related to uncertainty about position. In this case, we’ll have pretty standard electrons (so not much variation in momentum), and so the location of the wave packet in space should be fairly precise as well.
  3. The group velocity of the wave packet (vg) – i.e. the envelope in which our Ψ wave oscillates – equals the speed of our electron (v), but the phase velocity (i.e. the speed of our Ψ wave itself) is superluminal: we showed it’s equal to (vp) = E/p =   c2/v = c/β, with β = v/c, so that’s the ratio of the speed of our electron and the speed of light. Hence, the phase velocity will always be superluminal but will approach c as the speed of our particle approaches c. For slow-moving particles, we get astonishing values for the phase velocity, like more than a hundred times the speed of light for the electron we looked at in our previous post. That’s weird but it does not contradict relativity: if it helps, one can think of the wave packet as a modulation of an incredibly fast-moving ‘carrier wave’. 

Is any of this relevant? Does it help you to imagine what the electron actually is? Or what that matter wave actually is? Probably not. You will still wonder: How does it look like? What is it in reality?

That’s hard to say. If the experiment above does not convey any ‘reality’ according to you, then perhaps the illustration below will help. It’s one I have used in another post too (An Easy Piece: Introducing Quantum Mechanics and the Wave Function). I took it from Wikipedia, and it represents “the (likely) space in which a single electron on the 5d atomic orbital of an atom would be found.” The solid body shows the places where the electron’s probability density (so that’s the squared modulus of the probability amplitude) is above a certain value – so it’s basically the area where the likelihood of finding the electron is higher than elsewhere. The hue on the colored surface shows the complex phase of the wave function.

Hydrogen_eigenstate_n5_l2_m1

So… Does this help? 

You will wonder why the shape is so complicated (but it’s beautiful, isn’t it?) but that has to do with quantum-mechanical calculations involving quantum-mechanical quantities such as spin and other machinery which I don’t master (yet). I think there’s always a bit of a gap between ‘first principles’ in physics and the ‘model’ of a real-life situation (like a real-life electron in this case), but it’s surely the case in quantum mechanics! That being said, when looking at the illustration above, you should be aware of the fact that you are actually looking at a 3D representation of the wave function of an electron in orbit. 

Indeed, wave functions of electrons in orbit are somewhat less random than – let’s say – the wave function of one of those baryon resonances I mentioned above. As mentioned in my Not So Easy Piece, in which I introduced the Schrödinger equation (i.e. one of my previous posts), they are solutions of a second-order partial differential equation – known as the Schrödinger wave equation indeed – which basically incorporates one key condition: these solutions – which are (atomic or molecular) ‘orbitals’ indeed – have to correspond to so-called stationary states or standing waves. Now what’s the ‘reality’ of that? 

The illustration below comes from Wikipedia once again (Wikipedia is an incredible resource for autodidacts like me indeed) and so you can check the article (on stationary states) for more details if needed. Let me just summarize the basics:

  1. A stationary state is called stationary because the system remains in the same ‘state’ independent of time. That does not mean the wave function is stationary. On the contrary, the wave function changes as function of both time and space – Ψ = Ψ(x, t) remember? – but it represents a so-called standing wave.
  2. Each of these possible states corresponds to an energy state, which is given through the de Broglie relation: E = hf. So the energy of the state is proportional to the oscillation frequency of the (standing) wave, and Planck’s constant is the factor of proportionality. From a formal point of view, that’s actually the one and only condition we impose on the ‘system’, and so it immediately yields the so-called time-independent Schrödinger equation, which I briefly explained in the above-mentioned Not So Easy Piece (but I will not write it down here because it would only confuse you even more). Just look at these so-called harmonic oscillators below:

QuantumHarmonicOscillatorAnimation

A and B represent a harmonic oscillator in classical mechanics: a ball with some mass m (mass is a measure for inertia, remember?) on a spring oscillating back and forth. In case you’d wonder what the difference is between the two: both the amplitude as well as the frequency of the movement are different. 🙂 A spring and a ball?

It represents a simple system. A harmonic oscillation is basically a resonance phenomenon: springs, electric circuits,… anything that swings, moves or oscillates (including large-scale things such as bridges and what have you – in his 1965 Lectures (Vol. I-23), Feynman even discusses resonance phenomena in the atmosphere in his Lectures) has some natural frequency ω0, also referred to as the resonance frequency, at which it oscillates naturally indeed: that means it requires (relatively) little energy to keep it going. How much energy it takes exactly to keep them going depends on the frictional forces involved: because the springs in A and B keep going, there’s obviously no friction involved at all. [In physics, we say there is no damping.] However, both springs do have a different k (that’s the key characteristic of a spring in Hooke’s Law, which describes how springs work), and the mass m of the ball might be different as well. Now, one can show that the period of this ‘natural’ movement will be equal to t0 = 2π/ω= 2π(m/k)1/2 or that ω= (m/k)–1/2. So we’ve got a A and a B situation which differ in k and m. Let’s go to the so-called quantum oscillator, illustrations C to H.

C to H in the illustration are six possible solutions to the Schrödinger Equation for this situation. The horizontal axis is position (and so time is the variable) – but we could switch the two independent variables easily: as I said a number of times already, time and space are interchangeable in the argument representing the phase (θ) of a wave provided we use the right units (e.g. light-seconds for distance and seconds for time): θ = ωt – kx. Apart from the nice animation, the other great thing about these illustrations – and the main difference with resonance frequencies in the classical world – is that they show both the real part (blue) as well as the imaginary part (red) of the wave function as a function of space (fixed in the x axis) and time (the animation).

Is this ‘real’ enough? If it isn’t, I know of no way to make it any more ‘real’. Indeed, that’s key to understanding the nature of matter waves: we have to come to terms with the idea that these strange fluctuating mathematical quantities actually represent something. What? Well… The spooky thing that leads to the above-mentioned experimental results: electron diffraction and interference. 

Let’s explore this quantum oscillator some more. Another key difference between natural frequencies in atomic physics (so the atomic scale) and resonance phenomena in ‘the big world’ is that there is more than one possibility: each of the six possible states above corresponds to a solution and an energy state indeed, which is given through the de Broglie relation: E = hf. However, in order to be fully complete, I have to mention that, while G and H are also solutions to the wave equation, they are actually not stationary states. The illustration below – which I took from the same Wikipedia article on stationary states – shows why. For stationary states, all observable properties of the state (such as the probability that the particle is at location x) are constant. For non-stationary states, the probabilities themselves fluctuate as a function of time (and space of obviously), so the observable properties of the system are not constant. These solutions are solutions to the time-dependent Schrödinger equation and, hence, they are, obviously, time-dependent solutions.

StationaryStatesAnimationWe can find these time-dependent solutions by superimposing two stationary states, so we have a new wave function ΨN which is the sum of two others:  ΨN = Ψ1  + Ψ2. [If you include the normalization factor (as you should to make sure all probabilities add up to 1), it’s actually ΨN = (2–1/2)(Ψ1  + Ψ2).] So G and H above still represent a state of a quantum harmonic oscillator (with a specific energy level proportional to h), but so they are not standing waves.

Let’s go back to our electron traveling in a more or less straight path. What’s the shape of the solution for that one? It could be anything. Well… Almost anything. As said, the only condition we can impose is that the envelope of the wave packet – its ‘general’ shape so to say – should not change. That because we should not have dispersion – as illustrated below. [Note that this illustration only represent the real or the imaginary part – not both – but you get the idea.]

dispersion

That being said, if we exclude dispersion (because a real-life electron traveling in a straight line doesn’t just disappear – as do dispersive wave packets), then, inside of that envelope, the weirdest things are possible – in theory that is. Indeed, Nature does not care much about our Fourier transforms. So the example below, which shows a theoretical wave packet (again, the real or imaginary part only) based on some theoretical distribution of the wave numbers of the (infinite number) of component waves that make up the wave packet, may or may not represent our real-life electron. However, if our electron has any resemblance to real-life, then I would expect it to not be as well-behaved as the theoretical one that’s shown below.

example of wave packet

The shape above is usually referred to as a Gaussian wave packet, because of the nice normal (Gaussian) probability density functions that are associated with it. But we can also imagine a ‘square’ wave packet: a somewhat weird shape but – in terms of the math involved – as consistent as the smooth Gaussian wave packet, in the sense that we can demonstrate that the wave packet is made up of an infinite number of waves with an angular frequency ω that is linearly related to their wave number k, so the dispersion relation is ω = ak + b. [Remember we need to impose that condition to ensure that our wave packet will not dissipate (or disperse or disappear – whatever term you prefer.] That’s shown below: a Fourier analysis of a square wave.

Square wave packet

While we can construct many theoretical shapes of wave packets that respect the ‘no dispersion!’ condition, we cannot know which one will actually represent that electron we’re trying to visualize. Worse, if push comes to shove, we don’t know if these matter waves (so these wave packets) actually consist of component waves (or time-independent stationary states or whatever).

[…] OK. Let me finally admit it: while I am trying to explain you the ‘reality’ of these matter waves, we actually don’t know how real these matter waves actually are. We cannot ‘see’ or ‘touch’ them indeed. All that we know is that (i) assuming their existence, and (ii) assuming these matter waves are more or less well-behaved (e.g. that actual particles will be represented by a composite wave characterized by a linear dispersion relation between the angular frequencies and the wave numbers of its (theoretical) component waves) allows us to do all that arithmetic with these (complex-valued) probability amplitudes. More importantly, all that arithmetic with these complex numbers actually yields (real-valued) probabilities that are consistent with the probabilities we obtain through repeated experiments. So that’s what’s real and ‘not so real’ I’d say.

Indeed, the bottom-line is that we do not know what goes on inside that envelope. Worse, according to the commonly accepted Copenhagen interpretation of the Uncertainty Principle (and tons of experiments have been done to try to overthrow that interpretation – all to no avail), we never will.