# Lasers, masers, two-state systems and Feynman’s Lectures

The past few days I re-visited Feynman’s lectures on quantum math—the ones in which he introduces the concept of probability amplitudes (I will provide no specific reference or link to them because that is apparently unfair use of copyrighted material). The Great Richard Feynman introduces the concept of probability amplitudes as part of a larger discussion of two-state systems—and lasers and masers are a great example of such two-state systems. I have done a few posts on that while building up this blog over the past few years but because these have been mutilated by DMCA take-downs of diagrams and illustrations as a result of such ‘unfair use’, I won’t refer to them either. The point is this:

I have come to the conclusion we actually do not need the machinery of state vectors and probability amplitudes to explain how a maser (and, therefore, a laser) actually works.

The functioning of masers and lasers crucially depends on a dipole moment (of an ammonia molecule for a maser and of light-emitting atoms for a laser) which will flip up and down in sync with an external oscillating electromagnetic field. It all revolves around the resonant frequency (ω0), which depends on the tiny difference between the energies of the ‘up’ and ‘down’ states. This tiny energy difference (the A in the Hamiltonian matrix) is given by the product of the dipole moment (μ) and the external electromagnetic field that gets the thing going (Ɛ0). [Don’t confuse the symbols with the magnetic and electric constants here!] And so… Well… I have come to the conclusion that we can analyze this as just any other classical electromagnetic oscillation. We can effectively directly use the Planck-Einstein relation to determine the frequency instead of having to invoke all of the machinery that comes with probability amplitudes, base states, Hamiltonian matrices and differential equations:

ω0 = E/ħ = A/ħ = μƐ0/ħ

All the rest follows logically.

You may say: so what? Well… I find this very startling. I’ve been systematically dismantling a lot of ‘quantum-mechanical myths’, and so this seemed to be the last myth standing. It has fallen now: here is the link to the paper.

What’s the implication? The implication is that we can analyze all of the QED sector now in terms of classical mechanics: oscillator math, Maxwell’s equations, relativity theory and the Planck-Einstein relation will do. All that was published before the first World War broke out, in other words—with the added discoveries made by the likes of Holly Compton (photon-electron interactions), Carl Anderson (the discovery of anti-matter), James Chadwick (experimental confirmation of the existence of the neutron) and a few others after the war, of course! But that’s it, basically: nothing more, nothing less. So all of the intellectual machinery that was invented after World War I (the Bohr-Heisenberg theory of quantum mechanics) and after World War II (quantum field theory, the quark hypothesis and what have you) may be useful in the QCD sector of physics but − IMNSHO − even that remains to be seen!

I actually find this more than startling: it is shocking! I started studying Feynman’s Lectures – and everything that comes with it – back in 2012, only to find out that my idol had no intention whatsoever to make things easy. That is OK. In his preface, he writes he wanted to make sure that even the most intelligent student would be unable to completely encompass everything that was in the lectures—so that’s why we were attracted to them, of course! But that is, of course, something else than doing what he did, and that is to promote a Bright Shining Lie

[…]

Long time ago, I took the side of Bill Gates in the debate on Feynman’s qualities as a teacher. For Bill Gates, Feynman was, effectively, “the best teacher he never had.” One of those very bright people who actually had him as a teacher (John F. McGowan, PhD and math genius) paints a very different picture, however. I would take the side of McGowan in this discussion now—especially when it turns out that Mr. Feynman’s legacy can apparently no longer be freely used as a reference anyway.

Philip Anderson and Freeman Dyson died this year—both at the age of 96. They were the last of what is generally thought of as a brilliant generation of quantum physicists—the third generation, we might say. May they all rest in peace.

Post scriptum: In case you wonder why I refer to them as the third rather than the second generation: I actually consider Heisenberg’s generation to be the second generation of quantum physicists—first was the generation of the likes of Einstein!

As for the (intended) irony in my last remarks, let me quote from an interesting book on the state of physics that was written by Doris Teplitz back in 1982: “The state of the classical electromagnetic theory reminds one of a house under construction that was abandoned by its working workmen upon receiving news of an approaching plague. The plague was in this case, of course, quantum theory.” I now very much agree with this bold statement. So… Well… I think I’ve had it with studying Feynman’s Lectures. Fortunately, I spent only ten years on them or so. Academics have to spend their whole life on what Paul Ehrenfest referred to as the ‘unendlicher Heisenberg-Born-Dirac-Schrödinger Wurstmachinen-Physik-Betrieb.

# The mystery of the elementary charge

As part of my ‘debunking quantum-mechanical myths’ drive, I re-wrote Feynman’s introductory lecture on quantum mechanics. Of course, it has got nothing to do with Feynman’s original lecture—titled: on Quantum Behavior: I just made some fun of Feynman’s preface and that’s basically it in terms of this iconic reference. Hence, Mr. Gottlieb should not make too much of a fuss—although I hope he will, of course, because it would draw more attention to the paper. It was a fun exercise because it encouraged me to join an interesting discussion on ResearchGate (I copied the topic and some up and down below) which, in turn, made me think some more about what I wrote about the form factor in the explanation of the electron, muon and proton. Let me copy the relevant paragraph:

When we talked about the radius of a proton, we promised you we would talk some more about the form factor. The idea is very simple: an angular momentum (L) can always be written as the product of a moment of inertia (I) and an angular frequency (ω). We also know that the moment of inertia for a rotating mass or a hoop is equal to I = mr2, while it is equal to I = mr2/4 for a solid disk. So you might think this explains the 1/4 factor: a proton is just an anti-muon but in disk version, right? It is like a muon because of the strong force inside, but it is even smaller because it packs its charge differently, right?

Maybe. Maybe not. We think probably not. Maybe you will have more luck when playing with the formulas but we could not demonstrate this. First, we must note, once again, that the radius of a muon (about 1.87 fm) and a proton (0.83-0.84 fm) are both smaller than the radius of the pointlike charge inside of an electron (α·ħ/mec ≈ 2.818 fm). Hence, we should start by suggesting how we would pack the elementary charge into a muon first!

Second, we noted that the proton mass is 8.88 times that of the muon, while the radius is only 2.22 times smaller – so, yes, that 1/4 ratio once more – but these numbers are still weird: even if we would manage to, somehow, make abstraction of this form factor by accounting for the different angular momentum of a muon and a proton, we would probably still be left with a mass difference we cannot explain in terms of a unique force geometry.

Perhaps we should introduce other hypotheses: a muon is, after all, unstable, and so there may be another factor there: excited states of electrons are unstable too and involve an n = 2 or some other number in Planck’s E = n·h·f equation, so perhaps we can play with that too.

Our answer to such musings is: yes, you can. But please do let us know if you have more luck then us when playing with these formulas: it is the key to the mystery of the strong force, and we did not find it—so we hope you do!

So… Well… This is really as far as a realist interpretation of quantum mechanics will take you. One can solve most so-called mysteries in quantum mechanics (interference of electrons, tunneling and what have you) with plain old classical equations (applying Planck’s relation to electromagnetic theory, basically) but here we are stuck: the elementary charge itself is a most mysterious thing. When packing it into an electron, a muon or a proton, Nature gives it a very different shape and size.

The shape or form factor is related to the angular momentum, while the size has got to do with scale: the scale of a muon and proton is very different than that of an electron—smaller even than the pointlike Zitterbewegung charge which we used to explain the electron. So that’s where we are. It’s like we’ve got two quanta—rather than one only: Planck’s quantum of action, and the elementary charge. Indeed, Planck’s quantum of action may also be said to express itself itself very differently in space or in time (h = E·T versus h = p·λ). Perhaps there is room for additional simplification, but I doubt it. Something inside of me says that, when everything is said and done, I will just have to accept that electrons are electrons, and protons are protons, and a muon is a weird unstable thing in-between—and all other weird unstable things in-between are non-equilibrium states which one cannot explain with easy math.

Would that be good enough? For you? I cannot speak for you. Is it a good enough explanation for me? I am not sure. I have not made my mind up yet. I am taking a bit of a break from physics for the time being, but the question will surely continue to linger in the back of my mind. We’ll keep you updated on progress ! Thanks for staying tuned ! JL

PS: I realize the above might sound a bit like crackpot theory but that is just because it is very dense and very light writing at the same time. If you read the paper in full, you should be able to make sense of it. 🙂 You should also check the formulas for the moments of inertia: the I = mr2/4 formula for a solid disk depends on your choice of the axis of symmetry.

Dear Peter – Thanks so much for checking the paper and your frank comments. That is very much appreciated. I know I have gone totally overboard in dismissing much of post-WW II developments in quantum physics – most notably the idea of force-carrying particles (bosons – including Higgs, W/Z bosons and gluons). My fundamental intuition here is that field theories should be fine for modeling interactions (I’ll quote Dirac’s 1958 comments on that at the very end of my reply here) and, yes, we should not be limiting the idea of a field to EM fields only. So I surely do not want to give the impression I think classical 19th/early 20th century physics – Planck’s relation, electromagnetic theory and relativity – can explain everything.

Having said that, the current state of physics does resemble the state of scholastic philosophy before it was swept away by rationalism: I feel there has been a multiplication of ill-defined concepts that did not add much additional explanation of what might be the case (the latter expression is Wittgenstein’s definition of reality). So, yes, I feel we need some reincarnation of William of Occam to apply his Razor and kick ass. Fortunately, it looks like there are many people trying to do exactly that now – a return to basics – so that’s good: I feel like I can almost hear the tectonic plates moving. 🙂

My last paper is a half-serious rewrite of Feynman’s first Lecture on Quantum Mechanics. Its intention is merely provocative: I want to highlight what of the ‘mystery’ in quantum physics is truly mysterious and what is humbug or – as Feynman would call it – Cargo Cult Science. The section on the ‘form factor’ (what is the ‘geometry’ of the strong force?) in that paper is the shortest and most naive paragraph in that text but it actually does highlight the one and only question that keeps me awake: what is that form factor, what different geometry do we need to explain a proton (or a muon) as opposed to, say, an electron? I know I have to dig into the kind of stuff that you are highlighting – and Alex Burinskii’s Dirac-Kerr-Newman models (also integrating gravity) to find elements that – one day – may explain why a muon is not an electron, and why a proton is not a positron.

Indeed, I think the electron and photon model are just fine: classical EM and Planck’s relation are all that’s needed and so I actually don’t waste to more time on the QED sector. But a decent muon and proton model will, obviously, require ”something else’ than Planck’s relation, the electric charge and electromagnetic theory. The question here is: what is that ‘something else’, exactly?

Even if we find another charge or another field theory to explain the proton, then we’re just at the beginning of explaining the QCD sector. Indeed, the proton and muon are stable (fairly stable – I should say – in case of the muon – which I want to investigate because of the question of matter generations). In contrast, transient particles and resonances do not respect Planck’s relation – that’s why they are unstable – and so we are talking non-equilibrium states and so that’s an entirely different ballgame. In short, I think Dirac’s final words in the very last (fourth) edition of his ‘Principles of Quantum Mechanics’ still ring very true today. They were written in 1958 so Dirac was aware of the work of Gell-Man and Nishijima (the contours of quark-gluon theory) and, clearly, did not think much of it (I understand he also had conversations with Feynman on this):

“Quantum mechanics may be defined as the application of equations of motion to particles. […] The domain of applicability of the theory is mainly the treatment of electrons and other charged particles interacting with the electromagnetic field⎯a domain which includes most of low-energy physics and chemistry.

Now there are other kinds of interactions, which are revealed in high-energy physics and are important for the description of atomic nuclei. These interactions are not at present sufficiently well understood to be incorporated into a system of equations of motion. Theories of them have been set up and much developed and useful results obtained from them. But in the absence of equations of motion these theories cannot be presented as a logical development of the principles set up in this book. We are effectively in the pre-Bohr era with regard to these other interactions. It is to be hoped that with increasing knowledge a way will eventually be found for adapting the high-energy theories into a scheme based on equations of motion, and so unifying them with those of low-energy physics.”

Again, many thanks for reacting and, yes, I will study the references you gave – even if I am a bit skeptical of Wolfram’s new project. Cheers – JL

# Mr. Feynman and boson-fermion theory

I’ve been looking at chapter 4 of Feynman’s Lectures on Quantum Mechanics (the chapter on identical particles) for at least a dozen times now—probably more. This and the following chapters spell out the mathematical framework and foundations of mainstream quantum mechanics: the grand distinction between fermions and bosons, symmetric and asymmetric wavefunctions, Bose-Einstein versus Maxwell-Boltzmann statistics, and whatever else comes out of that—including the weird idea that (force) fields should also come in lumps (think of quantum field theory here). These ‘field lumps’ are then thought of as ‘virtual’ particles that, somehow, ‘mediate’ the force.

The idea that (kinetic and/or potential) energy and (linear and/or angular) momentum are being continually transferred – somehow, and all over space – by these ‘messenger’ particles sounds like medieval philosophy to me. However, to be fair, Feynman does actually not present these more advanced medieval ideas in his Lectures on Quantum Physics. I have always found that somewhat strange: he was about to receive a Nobel Prize for his path integral formulation of quantum mechanics and other contributions to what has now become the mainstream interpretation of quantum mechanics, so why wouldn’t he talk about it to his students, for which he wrote these lectures? In contrast, he does include a preview of Gell-Mann’s quark theory, although he does say – in a footnote – that “the material of this section is longer and harder than is appropriate at this point” and he, therefore, suggests to skip it and move to the next chapter.

[As for the path integral formulation of QM, I would think the mere fact that we have three alternative formulations of QM (matrix, wave-mechanical and path integral) would be sufficient there’s something wrong with these theories: reality is one, so we should have one unique (mathematical) description of it).]

Any case. I am probably doing too much Hineininterpretierung here. Let us return to the basic stuff that Feynman wanted his students to accept as a truthful description of reality: two kinds of statistics. Two different ways of interaction. Two kinds of particles. That’s what post-WW II gurus such as Feynman – all very much inspired by the ‘Club of Copenhagen’—aka known as the ‘Solvay Conference Club‘ – want us to believe: interactions with ‘Bose particles’ – this is the term Feynman uses in this text of 1963  – involve adding amplitudes with a + (plus) sign. In contrast, interactions between ‘Fermi particles’ involve a minus (−) sign when ‘adding’ the amplitudes.

The confusion starts early on: Feynman makes it clear he actually talks about the amplitude for an event to happen or not. Two possibilities are there: two ‘identical’ particles either get ‘swapped’ after the collision or, else, they don’t. However, in the next sections of this chapter – where he ‘proves’ or ‘explains’ the principle of Bose condensation for bosons and then the Pauli exclusion principle for fermions – it is very clear the amplitudes are actually associated with the particles themselves.

So his argument starts rather messily—conceptually, that is. Feynman also conveniently skips the most basic ontological or epistemological question here: how would a particle ‘know‘ how to choose between this or that kind of statistics? In other words, how does it know it should pick the plus or the minus sign when combining its amplitude with the amplitude of the other particle? It makes one think of Feynman’s story of the Martian in his Lecture on symmetries in Nature: what handshake are we going to do here? Left or right? And who sticks out his hand first? The Martian or the Earthian? A diplomat would ask: who has precedence when the two particles meet?

The question also relates to the nature of the wavefunction: if it doesn’t describe anything real, then where is it? In our mind only? But if it’s in our mind only, how comes we get real-life probabilities out of them, and real-life energy levels, or real-life momenta, etcetera? The core question (physical, epistemological, philosophical, esoterical or whatever you’d want to label it) is this: what’s the connection between these concepts and whatever it is that we are trying to describe? The only answer mainstream physicists can provide here is blabber. That’s why the mainstream interpretation of physics may be acceptable to physicists, but not to the general public. That’s why the debate continues to rage: no one believes the Standard Model. Full stop. The intuition of the masses here is very basic and, therefore, probably correct: if you cannot explain something in clear and unambiguous terms, then you probably do not understand it.

Hence, I suspect mainstream academic physicists probably do not understand whatever it is they are talking about. Feynman, by the way, admitted as much when writing – in the very first lines of the introduction to his Lectures on Quantum Mechanics – that “even the experts do not understand it the way they would like to.”

I am actually appalled by all of this. Worse, I am close to even stop talking or writing about it. I only kept going because a handful of readers send me a message of sympathy from time to time. I then feel I am actually not alone in what often feels like a lonely search in what a friend of mine refers to as ‘a basic version of truth.’ I realize I am getting a bit emotional here – or should I say: upset? – so let us get back to Feynman’s argument again.

Feynman starts by introducing the idea of a ‘particle’—a concept he does not define – not at all, really – but, as the story unfolds, we understand this concept somehow combines the idea of a boson and a fermion. He doesn’t motivate why he feels like he should lump photons and electrons together in some more general category, which he labels as ‘particles’. Personally, I really do not see the need to do that: I am fine with thinking of a photon as an electromagnetic oscillation (a traveling field, that is), and of electrons, protons, neutrons and whatever composite particle out there that is some combination of the latter as matter-particles. Matter-particles carry charge: electric charge and – who knows – perhaps some strong charge too. Photons don’t. So they’re different. Full stop. Why do we want to label everything out there as a ‘particle’?

Indeed, when everything is said and done, there is no definition of fermions and bosons beyond this magical spin-1/2 and spin-1 property. That property is something we cannot measure: we can only measure the magnetic moment of a particle: any assumption on their angular momentum assumes you know the mass (or energy) distribution of the particle. To put it more plainly: do you think of a particle as a sphere, a disk, or what? Mainstream physicists will tell you that you shouldn’t think that way: particles are just pointlike. They have no dimension whatsoever – in their mathematical models, that is – because all what experimentalists is measuring scattering or charge radii, and these show the assumption of an electron or a proton being pointlike is plain nonsensical.

Needless to say, besides the perfect scattering angle, Feynman also assumes his ‘particles’ have no spatial dimension whatsoever: he’s just thinking in terms of mathematical lines and points—in terms of mathematical limits, not in terms of the physicality of the situation.

Hence, Feynman just buries us under a bunch of tautologies here: weird words are used interchangeably without explaining what they actually mean. In everyday language and conversation, we’d think of that as ‘babble’. The only difference between physicists and us commoners is that physicists babble using mathematical language.

[…]

I am digressing again. Let us get back to Feynman’s argument. So he tells us we should just accept this theoretical ‘particle’, which he doesn’t define: he just thinks about two of these discrete ‘things’ going into some ‘exchange’ or ‘interaction’ and then coming out of it and going into one of the two detectors. The question he seeks to answer is this: can we still distinguish what is what after the ‘interaction’?

The level of abstraction here is mind-boggling. Sadly, it is actually worse than that: it is also completely random. Indeed, the only property of this mystical ‘particle’ in this equally mystical thought experiment of Mr. Feynman is that it scatters elastically with some other particle. However, that ‘other’ particle is ‘of the same kind’—so it also has no other property than that it scatters equally elastically from the first particle. Hence, I would think the question of whether the two particles are identical or not is philosophically empty.

To be rude, I actually wonder what Mr. Feynman is actually talking about here. Every other line in the argument triggers another question. One should also note, for example, that this elastic scattering happens in a perfect angle: the whole argument of adding or subtracting amplitudes effectively depends on the idea of a perfectly measurable angle here. So where is the Uncertainty Principle here, Mr. Feynman? It all makes me think that Mr. Feynman’s seminal lecture may well be the perfect example of what Prof. Dr. John P. Ralston wrote about his own profession:

“Quantum mechanics is the only subject in physics where teachers traditionally present haywire axioms they don’t really believe, and regularly violate in research.” (1)

Let us continue exposing Mr. Feynman’s argument. After this introduction of this ‘particle’ and the set-up with the detectors and other preconditions, we then get two or three paragraphs of weird abstract reasoning. Please don’t get me wrong: I am not saying the reasoning is difficult (it is not, actually): it is just weird and abstract because it uses complex number logic. Hence, Feynman implicitly requests the reader to believe that complex numbers adequately describes whatever it is that he is thinking of (I hope – but I am not so sure – he was trying to describe reality). In fact, this is the one point I’d agree with him: I do believe Euler’s function adequately describes the reality of both photons and electrons (see our photon and electron models), but then I also think +i and −i are two very different things. Feynman doesn’t, clearly.

It is, in fact, very hard to challenge Feynman’s weird abstract reasoning here because it all appears to be mathematically consistent—and it is, up to the point of the tricky physical meaning of the imaginary unit: Feynman conveniently forgets the imaginary unit represents a rotation of 180 degrees and that we, therefore, need to distinguish between these two directions so as to include the idea of spin. However, that is my interpretation of the wavefunction, of course, and I cannot use it against Mr. Feynman’s interpretation because his and mine are equally subjective. One can, therefore, only credibly challenge Mr. Feynman’s argument by pointing out what I am trying to point out here: the basic concepts don’t make any sense—none at all!

Indeed, if I were a student of Mr. Feynman, I would have asked him questions like this:

“Mr. Feynman, I understand your thought experiment applies to electrons as well as to photons. In fact, the argument is all about the difference between these two very different ‘types’ of ‘particles’. Can you please tell us how you’d imagine two photons scattering off each other elastically? Photons just pile on top of each other, don’t they? In fact, that’s what you prove next. So they don’t scatter off each other, do they? Your thought experiment, therefore, seems to apply to fermions only. Hence, it would seem we should not use it to derive properties for bosons, isn’t it?”

“Mr. Feynman, how should an electron (a fermion – so you say we should ‘add’ amplitudes using a minus sign) ‘think’ about what sign to use for interaction when a photon is going to hit it? A photon is a boson – so its sign for exchange is positive – so should we have an ‘exchange’ or ‘interaction’ with the plus or the minus sign then? More generally, who takes the ‘decisions’ here? Do we expect God – or Maxwell’s demon – to be involved in every single quantum-mechanical event?”

Of course, Mr. Feynman might have had trouble answering the first question, but he’d probably would not hesitate to produce some kind of rubbish answer to the second: “Mr. Van Belle, we are thinking of identical particles here. Particles of the same kind, if you understand what I mean.”

Of course, I obviously don’t understand what he  means but so I can’t tell him that. So I’d just ask the next logical question to try to corner him:

“Of course, Mr. Feynman. Identical particles. Yes. So, when thinking of fermion-on-fermion scattering, what mechanism do you have in mind? At the very least, we should be mindful of the difference between Compton versus Thomson scattering, shouldn’t we? How does your ‘elastic’ scattering relate to these two very different types of scattering? What is your theoretical interaction mechanism here?”

I can actually think of some more questions, but I’ll leave it at this. Well… No… Let me add another one:

“Mr. Feynman, this theory of interaction between ‘identical’ or ‘like’ particles (fermions and bosons) looks great but, in reality, we will also have non-identical particles interacting with each other—or, more generally speaking, particles that are not ‘of the same kind’. To be very specific, reality sees many electrons and many photons interacting with each other—not just once, at the occasion of some elastic collision, but all of the time, really. So could we, perhaps, generalize this to some kind of ‘three- or n-particle problem’?”

This sounds like a very weird question, which even Mr. Feynman might not immediately understand. So, if he didn’t shut me up already, he may have asked me to elaborate: “What do you mean, Mr. Van Belle? What kind of three- or n-particle problem are you talking about?” I guess I’d say something like this:

“Well… Already in classical physics, we do not have an analytical solution for the ‘three-body problem’, but at least we have the equations. So we have the underlying mechanism. What are the equations here? I don’t see any. Let us suppose we have three particles colliding or scattering or interacting or whatever it is we are trying to think of. How does any of the three particles know what the other two particles are going to be: a boson or a fermion? And what sign should they then use for the interaction? In fact, I understand you are talking amplitudes of events here. If three particles collide, how many events do you count: one, two, three, or six?”

One, two, three or six? Yes. Do we think of the interaction between three particles as one event, or do we split it up as a triangular thing? Or is it one particle interacting, somehow, with the two other, in which case we’re having two events, taking into account this weird plus or minus sign rule for interaction.

Crazy? Yes. Of course. But the questions are logical, aren’t they? I can think of some more. Here is one that, in my not-so-humble view, shows how empty these discussions on the theoretical properties of theoretical bosons and theoretical fermions actually are:

“Mr. Feynman, you say a photon is a boson—a spin-one particle, so its spin state is either 1, 0 or −1. How comes photons – the only boson that we actually know to exist from real-life experiments – do not have a spin-zero state? Their spin is always up or down. It’s never zero. So why are we actually even talking about spin-one particles, if the only boson we know – the photon – does not behave like it should behave according to your boson-fermion theory?” (2)

Am I joking? I am not. I like to think I am just asking very reasonable questions here—even if all of this may sound like a bit of a rant. In fact, it probably is, but so that’s why I am writing this up in a blog rather than in a paper. Let’s continue.

The subsequent chapters are about the magical spin-1/2 and spin-1 properties of fermions and bosons respectively. I call them magical, because – as mentioned above – all we can measure is the magnetic moment. Any assumption that the angular momentum of a particle – a ‘boson’ or a ‘fermion’, whatever it is – is ±1 or ±1/2, assumes we have knowledge of some form factor, which is determined by the shape of that particle and which tells us how the mass (or the energy) of a particle is distributed in space.

Again, that may sound sacrilegious: according to mainstream physicists, particles are supposed to be pointlike—which they interpret as having no spatial dimension whatsoever. However, as I mentioned above, that sounds like a very obvious oxymoron to me.

Of course, I know I would never have gotten my degree. When I did the online MIT course, the assistants of Prof. Dr. Zwieback also told me I asked too many questions: I should just “shut up and calculate.” You may think I’m joking again but, no: that’s the feedback I got. Needless to say, I went through the course and did all of the stupid exercises, but I didn’t bother doing the exams. I don’t mind calculating. I do a lot of calculations as a finance consultant. However, I do mind mindless calculations. Things need to make sense to me. So, yes, I will always be an ‘amateur physicist’ and a ‘blogger’—read: someone whom you shouldn’t take very seriously. I just hope my jokes are better than Feynman’s.

I’ve actually been thinking that getting a proper advanced degree in physics might impede understanding, so it’s good I don’t have one. I feel these mainstream courses do try to ‘brainwash’ you. They do not encourage you to challenge received wisdom. On the contrary, it all very much resembles rote learning: memorization based on repetition. Indeed, more modern textbooks – I looked at the one of my son, for example – immediately dive into the hocus-pocus—totally shamelessly. They literally start by saying you should not try to understand and that you just get through the math and accept the quantum-mechanical dogmas and axioms! Despite the appalling logic in the introductory chapters, Mr. Feynman, in contrast, at least has the decency to try to come up with some classical arguments here and there (although he also constantly adds that the student should just accept the hocus-pocus approach and the quantum-mechanical dogmas and not think too much about what it might or might not represent).

My son got high marks on his quantum mechanics exam: a 19/20, to be precise, and so I am really proud of him—and I also feel our short discussions on this or that may have helped him to get through it. Fortunately, he was doing it as part of getting a civil engineering degree (Bachelor’s level), and he was (also) relieved he would never have to study the subject-matter again. Indeed, we had a few discussions and, while he (also) thinks I am a bit of a crackpot theorist, he does agree “the math must describe something real” and that “therefore, something doesn’t feel right in all of that math.” I told him that I’ve got this funny feeling that, 10 or 20 years from now, 75% (more?) of post-WW II research in quantum physics – most of the theoretical research, at least (3) – may be dismissed as some kind of collective psychosis or, worse, as ‘a bright shining lie’ (title of a book I warmly recommend – albeit on an entirely different topic). Frankly, I think many academics completely forgot Boltzmann’s motto for the physicist:

“Bring forward what is true. Write it so that it is clear. Defend it to your last breath.”

[…]

OK, you’ll say: get real! So what is the difference between bosons and fermions, then? I told you already: I think it’s a useless distinction. Worse, I think it’s not only useless but it’s also untruthful. It has, therefore, hampered rather than promoted creative thinking. I distinguish matter-particles – electrons, protons, neutrons – from photons (and neutrinos). Matter-particles carry charge. Photons (and neutrinos) do not. (4) Needless to say, I obviously don’t believe in ‘messenger particles’ and/or ‘Higgs’ or other ‘mechanisms’ (such as the ‘weak force’ mechanism). That sounds too much like believing in God or some other non-scientific concept. [I don’t mind you believing in God or some other non-scientific concept – I actually do myself – but we should not confuse it with doing physics.]

And as for the question on what would be my theory of interaction? It’s just the classical theory: charges attract or repel, and one can add electromagnetic fields—all in respect of the Planck-Einstein law, of course. Charges have some dimension (and some mass), so they can’t take up the same space. And electrons, protons and neutrons have some structure, and physicists should focus on modeling those structures, so as to explain the so-called intrinsic properties of these matter-particles. As for photons, I think of them as an oscillating electromagnetic field (respecting the Planck-Einstein law, of course), and so we can simply add them. What causes them to lump together? Not sure: the Planck-Einstein law (being in some joint excited state, in other words) or gravity, perhaps. In any case: I am confident it is something real—i.e. not Feynman’s weird addition or subtraction rules for amplitudes.

However, this is not the place to re-summarize all of my papers. I’d just sum them up by saying this: not many physicists seem to understand Planck’s constant or, what amounts to the same, the concept of an elementary cycle. And their unwillingness to even think about the possible structure of photons, electrons and protons is… Well… I’d call it criminal.

[…]

I will now conclude my rant with another down-to-earth question: would I recommend reading Feynman’s Lectures? Or recommend youngsters to take up physics as a study subject?

My answer in regard to the first question is ambiguous: yes, and no. When you’d push me on this, I’d say: more yes than no. I do believe Feynman’s Lectures are much better than the modern-day textbook that was imposed on my son during his engineering studies and so, yes, I do recommend the older textbooks. But please be critical as you go through them: do ask yourself the same kind of questions that I’ve been asking myself while building up this blog: think for yourself. Don’t go by ‘authority’. Why not? Because the possibility that a lot of what labels itself as science may be nonsensical. As nonsensical as… Well… All what goes on in national and international politics for the moment, I guess. 🙂

In regard to the second question – should youngsters be encouraged to study physics? – I’d say what my father told me when I was hesitating to pick a subject for study: “Do what earns respect and feeds your family. You can do philosophy and other theoretical things on the side.”

With the benefit of hindsight, I can say he was right. I’ve done the stuff I wanted to do—on the side, indeed. So I told my son to go for engineering – rather than pure math or pure physics. 🙂 And he’s doing great, fortunately !

Jean Louis Van Belle

Notes:

(1) Dr. Ralston’s How To Understand Quantum Mechanics is fun for the first 10 pages or so, but I would not recommend it. We exchanged some messages, but then concluded that our respective interpretations of quantum mechanics are very different (I feel he replaces hocus-pocus by other hocus-pocus) and, hence, that we should not “waste any electrons” (his expression) on trying to convince each other.

(2) It is really one of the most ridiculous things ever. Feynman spends several chapters on explaining spin-one particles to, then, in some obscure footnote, suddenly write this: “The photon is a spin-one particle which has, however, no “zero” state.” From all of his jokes, I think this is his worst. It just shows how ‘rotten’ or ‘random’ the whole conceptual framework of mainstream QM really is. There is, in fact, another glaring inconsistency in Feynman’s Lectures: in the first three chapters of Volume III, he talks about adding wavefunctions and the basic rules of quantum mechanics, and it all happens with a plus sign. In this chapter, he suddenly says the amplitudes of fermions combine with a minus sign. If you happen to know a physicist who can babble his way of out this inconsistency, please let me know.

(3) There are exceptions, of course. I mentioned very exciting research in various posts, but most of it is non-mainstream. The group around Herman Batalaan at the University of Nebraska and various ‘electron modellers’ are just one of the many examples. I contacted a number of these ‘particle modellers’. They’re all happy I show interest, but puzzled themselves as to why their research doesn’t get all that much attention. If it’s a ‘historical accident’ in mankind’s progress towards truth, then it’s a sad one.

(4) We believe a neutron is neutral because it has both positive and negative charge in it (see our paper on protons and neutrons). as for neutrinos, we have no idea what they are, but our wild guess is that they may be the ‘photons’ of the strong force: if a photon is nothing but an oscillating electromagnetic field traveling in space, then a neutrino might be an oscillating strong field traveling in space, right? To me, it sounds like a reasonable hypothesis, but who am I, right? 🙂 If I’d have to define myself, it would be as one of Feynman’s ideal students: someone who thinks for himself. In fact, perhaps I would have been able to entertain him as much as he entertained me— and so, who knows, I like to think he might actually have given me some kind of degree for joking too ! 🙂

(5) There is no (5) in the text of my blog post, but I just thought I would add one extra note here. 🙂 Herman Batelaan and some other physicists wrote a Letter to the Physical Review Journal back in 1997. I like Batelaan’s research group because – unlike what you might think – most of Feynman’s thought experiments have actually never been done. So Batelaan – and some others – actually did the double-slit experiment with electrons, and they are doing very interesting follow-on research on it.

However, let me come to the point I want to mention here. When I read these lines in that very serious Letter, I didn’t know whether to laugh or to cry:

“Bohr’s assertion (on the impossibility of doing a Stern-Gerlach experiment on electrons or charged particles in general) is thus based on taking the classical limit for ħ going to 0. For this limit not only the blurring, but also the Stern-Gerlach splitting vanishes. However, Dehmelt argues that ħ is a nonzero constant of nature.”

I mean… What do you make of this? Of course, ħ is a nonzero constant, right? If it was zero, the Planck-Einstein relation wouldn’t make any sense, would it? What world were Bohr, Heisenberg, Pauli and others living in? A different one than ours, I guess. But that’s OK. What is not OK, is that these guys were ignoring some very basic physical laws and just dreamt up – I am paraphrasing Ralston here – “haywire axioms they did not really believe in, and regularly violated themselves.” And they didn’t know how to physically interpret the Planck-Einstein relation and/or the mass-energy equivalence relation. Sabine Hossenfelder would say they were completely lost in math. 🙂

# Babushka thinking

Pre-scriptum (dated 26 June 2020): This is an interesting post. I think my thoughts on the relevance of scale – especially the role of the fine-structure constant in this regard – have evolved considerably, so you should probably read my papers instead of these old blog posts.

Original post:

What is that we are trying to understand? As a kid, when I first heard about atoms consisting of a nucleus with electrons orbiting around it, I had this vision of worlds inside worlds, like a set of babushka dolls, one inside the other. Now I know that this model – which is nothing but the 1911 Rutherford model basically – is plain wrong, even if it continues to be used in the logo of the International Atomic Energy Agency, or the US Atomic Energy Commission.

Electrons are not planet-like things orbiting around some center. If one wants to understand something about the reality of electrons, one needs to familiarize oneself with complex-valued wave functions whose argument represents a weird quantity referred to as a probability amplitude and, contrary to what you may think (unless you read my blog, or if you just happen to know a thing or two about quantum mechanics), the relation between that amplitude and the concept of probability tout court is not very straightforward.

Familiarizing oneself with the math involved in quantum mechanics is not an easy task, as evidenced by all those convoluted posts I’ve been writing. In fact, I’ve been struggling with these things for almost a year now and I’ve started to realize that Roger Penrose’s Road to Reality (or should I say Feynman’s Lectures?) may lead nowhere – in terms of that rather spiritual journey of trying to understand what it’s all about. If anything, they made me realize that the worlds inside worlds are not the same. They are different – very different.

When everything is said and done, I think that’s what’s nagging us as common mortals. What we are all looking for is some kind of ‘Easy Principle’ that explains All and Everything, and we just can’t find it. The point is: scale matters. At the macro-scale, we usually analyze things using some kind of ‘billiard-ball model’. At a smaller scale, let’s say the so-called wave zone, our ‘law’ of radiation holds, and we can analyze things in terms of electromagnetic or gravitational fields. But then, when we further reduce scale, by another order of magnitude really – when trying to get  very close to the source of radiation, or if we try to analyze what is oscillating really – we get in deep trouble: our easy laws do no longer hold, and the equally easy math – easy is relative of course 🙂 – we use to analyze fields or interference phenomena, becomes totally useless.

Religiously inclined people would say that God does not want us to understand all or, taking a somewhat less selfish picture of God, they would say that Reality (with a capital R to underline its transcendental aspects) just can’t be understood. Indeed, it is rather surprising – in my humble view at least – that things do seem to get more difficult as we drill down: in physics, it’s not the bigger things – like understanding thermonuclear fusion in the Sun, for example – but the smallest things which are difficult to understand. Of course, that’s partly because physics leaves some of the bigger things which are actually very difficult to understand – like how a living cell works, for example, or how our eye or our brain works – to other sciences to study (biology and biochemistry for cells, or for vision or brain functionality). In that respect, physics may actually be described as the science of the smallest things. The surprising thing, then, is that the smallest things are not necessarily the simplest things – on the contrary.

Still, that being said, I can’t help feeling some sympathy for the simpler souls who think that, if God exists, he seems to throw up barriers as mankind tries to advance its knowledge. Isn’t it strange, indeed, that the math describing the ‘reality’ of electrons and photons (i.e. quantum mechanics and quantum electrodynamics), as complicated as it is, becomes even more complicated – and, important to note, also much less accurate – when it’s used to try to describe the behavior of  quarks and gluons? Additional ‘variables’ are needed (physicists call these ‘variables’ quantum numbers; however, when everything is said and done, that’s what quantum numbers actually are: variables in a theory), and the agreement between experimental results and predictions in QCD is not as obvious as it is in QED.

Frankly, I don’t know much about quantum chromodynamics – nothing at all to be honest – but when I read statements such as “analytic or perturbative solutions in low-energy QCD are hard or impossible due to the highly nonlinear nature of the strong force” (I just took this one line from the Wikipedia article on QCD), I instinctively feel that QCD is, in fact, a different world as well – and then I mean different from QED, in which analytic or perturbative solutions are the norm. Hence, I already know that, once I’ll have mastered Feynman’s Volume III, it won’t help me all that much to get to the next level of understanding: understanding quantum chromodynamics will be yet another long grind. In short, understanding quantum mechanics is only a first step.

Of course, that should not surprise us, because we’re talking very different order of magnitudes here: femtometers (10–15 m), in the case of electrons, as opposed to attometers (10–18 m) or even zeptometers (10–21 m) when we’re talking quarks. Hence, if past experience (I mean the evolution of scientific thought) is any guidance, we actually should expect an entirely different world. Babushka thinking is not the way forward.

Babushka thinking

What’s babushka thinking? You know what babushkas are, don’t you? These dolls inside dolls. [The term ‘babushka’ is actually Russian for an old woman or grandmother, which is what these dolls usually depict.] Babushka thinking is the fallacy of thinking that worlds inside worlds are the same. It’s what I did as a kid. It’s what many of us still do. It’s thinking that, when everything is said and done, it’s just a matter of not being able to ‘see’ small things and that, if we’d have the appropriate equipment, we actually would find the same doll within the larger doll – the same but smaller – and then again the same doll with that smaller doll. In Asia, they have these funny expression: “Same-same but different.” Well… That’s what babushka thinking all about: thinking that you can apply the same concepts, tools and techniques to what is, in fact, an entirely different ballgame.

Let me illustrate it. We discussed interference. We could assume that the laws of interference, as described by superimposing various waves, always hold, at every scale, and that it’s just  the crudeness of our detection apparatus that prevents us from seeing what’s going on. Take two light sources, for example, and let’s say they are a billion wavelengths apart – so that’s anything between 400 to 700 meters for visible light (because the wavelength of visible light is 400 to 700 billionths of a meter). So then we won’t see any interference indeed, because we can’t register it. In fact, none of the standard equipment can. The interference term oscillates wildly up and down, from positive to negative and back again, if we move the detector just a tiny bit left or right – not more than the thickness of a hair (i.e. 0.07 mm or so). Hence, the range of angles θ (remember that angle θ was the key variable when calculating solutions for the resultant wave in previous posts) that are being covered by our eye – or by any standard sensor really – is so wide that the positive and negative interference averages out: all that we ‘see’ is the sum of the intensities of the two lights. The terms in the interference term cancel each other out. However, we are still essentially correct assuming there actually is interference: we just cannot see it – but it’s there.

Reinforcing the point, I should also note that, apart from this issue of ‘distance scale’, there is also the scale of time. Our eye has a tenth-of-a-second averaging time. That’s a huge amount of time when talking fundamental physics: remember that an atomic oscillator – despite its incredibly high Q – emits radiation for like 10-8 seconds only, so that’s one-hundred millionths of a second. Then another atom takes over, and another – and so that’s why we get unpolarized light: it’s all the same frequencies (because the electron oscillators radiate at their resonant frequencies), but so there is no fixed phase difference between all of these pulses: the interference between all of these pulses should result in ‘beats’ – as they interfere positively or negatively – but it all cancels out for us, because it’s too fast.

Indeed, while the ‘sensors’ in the retina of the human eye (there are actually four kind of cells there, but so the principal ones are referred to as ‘rod’ and ‘cone’ cells respectively) are, apparently, sensitive enough able to register individual photons, the “tenth-of-a-second averaging” time means that the cells – which are interconnected and ‘pre-process’ light really – will just amalgamate all those individual pulses into one signal of a certain color (frequency) and a certain intensity (energy). As one scientist puts it: “The neural filters only allow a signal to pass to the brain when at least about five to nine photons arrive within less than 100 ms.” Hence, that signal will not keep track of the spacing between those photons.

In short, information gets lost. But so that, in itself, does not invalidate babushka thinking. Let me visualize it by a non-very-mathematically-rigorous illustration. Suppose that we have some very regular wave train coming in, like the one below: one wave train consisting of three ‘groups’ separated between ‘nodes’.

All will depend on the period of the wave as compared to that one-tenth-of-a-second averaging time. In fact, we have two ‘periods’: the periodicity of the group – which is related to the concept of group velocity – and, hence, I’ll associate a ‘group wavelength’ and a ‘group period’ with that. [In case you haven’t heard of these terms before, don’t worry: I haven’t either. :-)] Now, if one tenth of a second covers like two or all three of the groups between the nodes (so that means that one tenth of a second is a multiple of the group period Tg), then even the envelope of the wave does not matter much in terms of ‘signal’: our brain will just get one pulse that averages it all out. We will see none of the detail of this wave train. Our eye will just get light in (remember that the intensity of the light is the square of the amplitude, so the negative amplitudes make contributions too) but we cannot distinguish any particular pulse: it’s just one signal. This is the most common situation when we are talking about electromagnetic radiation: many photons arrive but our eye just sends one signal to the brain: “Hey Boss! Light of color X and intensity Y coming from direction Z.”

In fact, it’s quite remarkable that our eye can distinguish colors in light of the fact that the wavelengths of various colors (violet, blue, green, yellow, orange and red) differs 30 to 40 billionths of a meter only! Better still: if the signal lasts long enough, we can distinguish shades whose wavelengths differ by 10 or 15 nm only, so that’s a difference of 1% or 2% only. In case you wonder how it works: Feynman devotes not less than two chapters in his Lectures to the physiology of the eye: not something you’ll find in other physics handbooks! There are apparently three pigments in the cells in our eyes, each sensitive to color in a different way and it is “the spectral absorption in those three pigments that produces the color sense.” So it’s a bit like the RGB system in a television – but then more complicated, of course!

But let’s go back to our wave there and analyze the second possibility. If a tenth of a second covers less than that ‘group wavelength’, then it’s different: we will actually see the individual groups as two or  three separate pulses. Hence, in that case, our eye – or whatever detector (another detector will just have another averaging time – will average over a group, but not over the whole wave train. [Just in case you wonder how we humans compare with our living beings: from what I wrote above, it’s obvious we can see ‘flicker’ only if the oscillation is in the range of 10 or 20 Hz. The eye of a bee is made to see the vibrations of feet and wings of other bees and, hence, its averaging time is much shorter, like a hundredth of a second and, hence, it can see flicker up to 200 oscillations per second! In addition, the eye of a bee is sensitive over a much wider range of ‘color’ – it sees UV light down to a wavelength of 300 nm (where as we don’t see light with a wavelength below 400 nm) – and, to top it all off, it has got a special sensitivity for polarized light, so light that gets reflected or diffracted looks different to the bee.]

Let’s go to the third and final case. If a tenth of a second would cover less than the wavelength of the the so-called carrier wave, i.e. the actual oscillation, then we will be able to distinguish the individual peaks and troughs of the carrier wave!

Of course, this discussion is not limited to our eye as a sensor: any instrument will be able to measure individual phenomena only within a certain range, with an upper and a lower range, i.e. the ‘biggest’ thing it can see, and the ‘smallest’. So that explains the so-called resolution of an optical or an electron microscope: whatever the instrument, it cannot really ‘see’ stuff that’s smaller than the wavelength of the ‘light’ (real light or – in the case of an electron microscope – electron beams) it uses to ‘illuminate’ the object it is looking at. [The actual formula for the resolution of a microscope is obviously a bit more complicated, but this statement does reflect the gist of it.]

However, all that I am writing above, suggests that we can think of what’s going on here as ‘waves within waves’, with the wave between nodes not being any different – in substance that is – as the wave as a whole: we’ve got something that’s oscillating, and within each individual oscillation, we find another oscillation. From a math point of view, babushka thinking is thinking we can analyze the world using Fourier’s machinery to decompose some function (see my posts on Fourier analysis). Indeed, in the example above, we have a modulated carrier wave (it is an example of amplitude modulation – the old-fashioned way of transmitting radio signals), and we see a wave within a wave and, hence, just like the Rutherford model of an atom, you may think there will always be ‘a wave within a wave’.

In this regard, you may think of fractals too: fractals are repeating or self-similar patterns that are always there, at every scale. However, the point to note is that fractals do not represent an accurate picture of how reality is actually structured: worlds within worlds are not the same.

Reality is no onion

Reality is not some kind of onion, from which you peel off a layer and then you find some other layer, similar to the first: “same-same but different”, as they’d say in Asia. The Coast of Britain is, in fact, finite, and the grain of sand you’ll pick up at one of its beaches will not look like the coastline when you put it under a microscope. In case you don’t believe me: I’ve inserted a real-life photo below. The magnification factor is a rather modest 300 times. Isn’t this amazing? [The credit for this nice picture goes to a certain Dr. Gary Greenberg. Please do google his stuff. It’s really nice.]

In short, fractals are wonderful mathematical structures but – in reality – there are limits to how small things get: we cannot carve a babushka doll out of the cellulose and lignin molecules that make up most of what we call wood. Likewise, the atoms that make up the D-glucose chains in the cellulose will never resemble the D-glucose chains. Hence, the babushka doll, the D-glucose chains that make up wood, and the atoms that make up the molecules within those macro-molecules are three different worlds. They’re not like layers of the same onion. Scale matters. The worlds inside words are different, and fundamentally so: not “same-same but different” but just plain different. Electrons are no longer point-like negative charges when we look at them at close range.

In fact, that’s the whole point: we can’t look at them at close range because we can’t ‘locate’ them. They aren’t particles. They are these strange ‘wavicles’ which we described, physically and mathematically, with a complex wave function relating their position (or their momentum) with some probability amplitude, and we also need to remember these funny rules for adding these amplitudes, depending on whether or not the ‘wavicle’ obeys Fermi or Bose statistics.

Weird, but – come to think of it – not more weird, in terms of mathematical description, than these electromagnetic waves. Indeed, when jotting down all these equations and developing all those mathematical argument, one often tends to forget that we are not talking some physical wave here. The field vector E (or B) is a mathematical construct: it tells us what force a charge will feel when we put it here or there. It’s not like a water or sound wave that makes some medium (water or air) actually move. The field is an influence that travels through empty space. But how can something actually through empty space? When it’s truly empty, you can’t travel through it, can you?

Oh – you’ll say – but we’ve got these photons, don’t we? Waves are not actually waves: they come in little packets of energy – photons. Yes. You’re right. But, as mentioned above, these photons aren’t little bullets – or particles if you want. They’re as weird as the wave and, in any case, even a billiard ball view of the world is not very satisfying: what happens exactly when two billiard balls collide in a so-called elastic collision? What are the springs on the surface of those balls – in light of the quick reaction, they must resemble more like little explosive charges that detonate on impact, isn’t it? – that make the two balls recoil from each other?

So any mathematical description of reality becomes ‘weird’ when you keep asking questions, like that little child I was – and I still am, in a way, I guess. Otherwise I would not be reading physics at the age of 45, would I? 🙂

Conclusion

Let me wrap up here. All of what I’ve been blogging about over the past few months concerns the classical world of physics. It consists of waves and fields on the one hand, and solid particles on the other – electrons and nucleons. But so we know it’s not like that when we have more sensitive apparatuses, like the apparatus used in that 2012 double-slit electron interference experiment at the University of Nebraska–Lincoln, that I described at length in one of my earlier posts. That apparatus allowed control of two slits – both not more than 62 nanometer wide (so that’s the difference between the wavelength of dark-blue and light-blue light!), and the monitoring of single-electron detection events. Back in 1963, Feynman already knew what this experiment would yield as a result. He was sure about it, even if he thought such instrument could never be built. [To be fully correct, he did have some vague idea about a new science, for which he himself coined the term ‘nanotechnology’, but what we can do today surpasses, most probably, all his expectations at the time. Too bad he died too young to see his dreams come through.]

The point to note is that this apparatus does not show us another layer of the same onion: it shows an entirely different world. While it’s part of reality, it’s not ‘our’ reality, nor is it the ‘reality’ of what’s being described by classical electromagnetic field theory. It’s different – and fundamentally so, as evidenced by those weird mathematical concepts one needs to introduce to sort of start to ‘understand’ it.

So… What do I want to say here? Nothing much. I just had to remind myself where I am right now. I myself often still fall prey to babushka thinking. We shouldn’t. We should wonder about the wood these dolls are made of. In physics, the wood seems to be math. The models I’ve presented in this blog are weird: what are those fields? And just how do they exert a force on some charge? What’s the mechanics behind? To these questions, classical physics does not have an answer really.

But, of course, quantum mechanics does not have a very satisfactory answer either: what does it mean when we say that the wave function collapses? Out of all of the possibilities in that wonderful indeterminate world ‘inside’ the quantum-mechanical universe, one was ‘chosen’ as something that actually happened: a photon imparts momentum to an electron, for example. We can describe it, mathematically, but – somehow – we still don’t really understand what’s going on.

So what’s going on? We open a doll, and we do not find another doll that is smaller but similar. No. What we find is a completely different toy. However – Surprise ! Surprise ! – it’s something that can be ‘opened’ as well, to reveal even weirder stuff, for which we need even weirder ‘tools’ to somehow understand how it works (like lattice QCD, if you’d want an example: just google it if you want to get an inkling of what that’s about). Where is this going to end? Did it end with the ‘discovery’ of the Higgs particle? I don’t think so.

However, with the ‘discovery’ (or, to be generous, let’s call it an experimental confirmation) of the Higgs particle, we may have hit a wall in terms of verifying our theories. At the center of a set of babushka dolls, you’ll usually have a little baby: a solid little thing that is not like the babushkas surrounding it: it’s young, male and solid, as opposed to the babushkas. Well… It seems that, in physics, we’ve got several of these little babies inside: electrons, photons, quarks, gluons, Higgs particles, etcetera. And we don’t know what’s ‘inside’ of them. Just that they’re different. Not “same-same but different”. No. Fundamentally different. So we’ve got a lot of ‘babies’ inside of reality, very different from the ‘layers’ around them, which make up ‘our’ reality. Hence, ‘Reality’ is not a fractal structure. What is it? Well… I’ve started to think we’ll never know. For all of the math and wonderful intellectualism involved, do we really get closer to an ‘understanding’ of what it’s all about?

I am not sure. The more I ‘understand’, the less I ‘know’ it seems. But then that’s probably why many physicists still nurture an acute sense of mystery, and why I am determined to keep reading. 🙂

Post scriptum: On the issue of the ‘mechanistic universe’ and the (related) issue of determinability and indeterminability, that’s not what I wanted to write about above, because I consider that solved. This post is meant to convey some wonder – on the different models of understanding that we need to apply to different scales. It’s got little to do with determinability or not. I think that issue got solved long time ago, and I’ll let Feynman summarize that discussion:

“The indeterminacy of quantum mechanics has given rise to all kinds of nonsense and questions on the meaning of freedom of will, and of the idea that the world is uncertain. […] Classical physics is also indeterminate. It is true, classically, that if we knew the position and the velocity of every particle in the world, or in a box of gas, we could predict exactly what would happen. And therefore the classical world is deterministic. Suppose, however, we have a finite accuracy and do not know exactly where just one atom is, say to one part in a billion. Then as it goes along it hits another atom, and because we did not know the position better than one part in a billion, we find an even larger error in the position after the collision. And that is amplified, of course, in the next collision, so that if we start with only a tiny error it rapidly magnifies to a very great uncertainty. […] Speaking more precisely, given an arbitrary accuracy, no matter how precise, one can find a time long enough that we cannot make predictions valid for that long a time. That length of time is not very large. It is not that the time is millions of years if the accuracy is one part in a billion. The time goes only logarithmically with the error. In only a very, very tiny time – less than the time it took to state the accuracy – we lose all our information. It is therefore not fair to say that from the apparent freedom and indeterminacy of the human mind, we should have realized that classical ‘deterministic’ physics could not ever hope to understand, and to welcome quantum mechanics as a release from a completely ‘mechanistic’ universe. For already in classical mechanics, there was indeterminability from a practical point of view.” (Feynman, Lectures, 1963, p. 38-10)

That really says it all, I think. I’ll just continue to keep my head down – i.e. stay away from philosophy as for now – and try to find a way to open the toy inside the toy. 🙂