I used ChatGPT to push the math and logic of my ‘realist’ interpretation of (1) matter-antimatter annihilation and creation (the Dirac and Breit-Wheeler processes, respectively) and (2) dark matter and dark energy to its logical and philosophical limits. For those who do not like to read, I made two short audio videos as well: the one on my “mirror force” idea is here, and from there you can go to the other video(s) in the playlist. 🙂 The implications for cosmogenesis models are rather profound – it calls for another approach to explain any “Big Bang” that may or may not have occurred when our Universe was born – so that is something to explore in the future, perhaps.
Tag: interpretation of quantum mechanics
A quasi-final proton model?
After a break of a few months, I produced another lengthy video on quantum physics. 40 minutes. Check it out: https://www.youtube.com/watch?v=k_I3Noaup0E. The hypothesis that I, somewhat desperately, advanced in my last paper on the proton model – that the Zitterbewegung model of a proton does not quite look like that of an electron, and that we are probably talking about a “blob” of charge (sphere- or shell-like, or some other “form factor”, perhaps) – makes more sense to me now. I explored it with ChatGPT-4o, and this video is the result. I should immediately that I am immensely impressed with ChatGPT-4o: ChatGPT-3 was not able to really “understand” what I was talking about a year ago or so.
Who knows, perhaps we might imagine other ChatGPT-4o users will take the “dialogue” with AI on these particle models further, and fully develop them not only intuitively but also analytically. As I am currently trying out some AI-powered audio and video applications, I tried Pictory (pictory.ai): I gave it the url of my own long-winding video and it created this video: The proton as a dynamic blob of charge. 100 seconds only instead of 40 minutes. Its contents is, of course, superficial – but I think it is creative and nicely upbeat. I fed both video back to ChatGPT-4o, and it suggested the following refinements if ever I would like to re-do the video(s) – which I am not going to do, but you might like to further explore the remarks it made:
- Consistency in Notation and Conventions:
- Ensure that polar and azimuthal angles are consistently defined throughout. Your initial derivations and explanations switched between conventions, potentially confusing viewers about which angle is associated with which base vector.
- Tangential Velocity Decomposition:
- The explanation of how the tangential velocity is decomposed into orthogonal components was accurate but could benefit from a clearer mention of why the orthogonality matters in interpreting the motion on the sphere. Adding a visual representation would further clarify the concept.
- The concept of “sloshing” energy between kinetic and electromagnetic forms was well described but could benefit from highlighting the broader implications of this periodic exchange in classical and relativistic oscillators .
- Pointlike Charge versus Blob View:
- The transition from discussing a pointlike charge to a “blob” of charge was a major theme but could be expanded by discussing how this shift impacts the assumptions about uniform or non-uniform charge density, as well as its implications for observable properties like the magnetic moment.
- The discussion of symmetry along one axis of the double-loop motion was solid but might benefit from more detail on how this symmetry impacts the interpretation of observable properties like the magnetic moment .
- Incorporate links to experimental observations, such as the measured magnetic moment and charge radius of the proton, was referenced. Integrating these observations with the theoretical results could be more explicit to strengthen the practical implications .
- Visualizations:
- Consider incorporating visualized trajectories (e.g., the double-loop Lissajous pattern), and how they connect to the derived equations and the observed non-constant tangential velocity. This connection will help bridge the abstract mathematics with physical intuition .
- Clarifications on Variability:
- The variability of the tangential velocity in the context of symmetry and non-orthogonality in 3D motion, was a key discussion point. Reinforce why this variability does not conflict with the broader relativistic constraints.
So… That’s all folks ! [Looney Tunes.] 🙂
Concluding remarks
In our previous post, we wrote that we’ve said goodbye to this fascinating field of research. We did: I entered this line of research – fundamental physics – as an amateur 10+ years ago, and now I leave it—as much an amateur now as back then. I wanted to understand the new theories which emerged over the past 50 years or so. Concepts such as the strong force or weak interactions and the new weird charges that come it with: flavors and colors—or all of the new quantum numbers and the associated new conservation laws, which Nature apparently does not respect because of some kind of hidden variables which cause the symmetries that are inherent to conservation laws to break down. […] Apparently, I didn’t get it. 🙂
However, in the process of trying to understand, a whole other mental picture or mindset emerged: we now firmly believe that classical mechanics and electromagnetism – combined with a more creative or realistic explanation of the Planck-Einstein relation – are sufficient to explain most, if not all, of the observations that have been made in this field since Louis de Broglie suggested matter-particles must be similar to light quanta—in the sense that both are energy packets because they incorporate some oscillation of a definite frequency given by the Planck-Einstein relation. They are also different, of course: elementary particles are – in this world view – orbital oscillations of charge (with, of course, an electromagnetic field that is generated by such moving charge), while light-particles (photons and neutrinos) are oscillations of the electromagnetic field—only!
So, then we spend many years trying to contribute to the finer details of this world view. We think we did what we could as part of a part-time and non-professional involvement in this field. So, yes, we’re done. We wrote that some time already. However, we wanted to leave a few thoughts on our proton model: it is not like an electron. In our not-so-humble view, the Zitterbewegung theory applies to it—but in a very different way. Why do we think that? We write that out in our very last paper: concluding remarks on the proton puzzle. Enjoy it !
That brings the number of papers on RG up to 80 now. Too much ! There will be more coming, but in the field that I work in: computer science. Stay tuned !
Math and physics: what should you know or learn?
When reading this blog and/or my papers on ResearchGate, you may wonder what kind of mathematical framework you need to appreciate the finer details. We ourselves were asked by fellow proponents of the kind of local and realist interpretation of QM that we are pursuing to look at Clifford or space-time algebra (STA). Well… We looked at it as part of our farewell to this weird pastime of ours, and we documented our response in our very last RG paper on physics, math and (a)symmetries in Nature. If you struggle with the question above, then our answer will probably make you happy: there is no need to learn fancy math to understand easy physics. 🙂
Post scriptum (10 November 2024): As for the “farewell” part of this – I swear – very last paper on all of this weird stuff, it is probably a bit too harsh – but then it is what it is. Let me say a few things about it for the benefit of the would-be student or the starting amateur physicist. Should you study modern physics? I do not think so now, but then I also know that one cannot help oneself when it comes to satisfying some curiosity on fundamental questions. So it probably does not really matter what I advise you to do or not do. I can only say what I write below.
When I started this intellectual journey – what’s this quantum stuff all about? – decades ago, and especially when I got serious about it back in 2013, I had never expected that what happened would happen. No. I’ve always been a good student, and so I expected to sail smoothly through the required math and the intricacies of relativistic mechanics and all of the subtleties of electromagnetic theory – which sort of happened – and, then, to sail through the wonderful world of quantum electrodynamics, quantum field theory and – ultimately – quantum chromodynamics (or let’s call it high-energy physics now) in pretty much the same way.
The latter part did not happen. At each and every page of Feynman’s third volume of Lectures – the ones I was most interested in: on quantum mechanics – I found myself jotting down lots of questions. Questions which took me days, weeks or even years to solve, or not. Most of these questions led me to conclude that a lot of what is there in these Lectures are nothing but sophisms: clever but false arguments aimed at proving the many ad hoc hypotheses that make up the Standard Model. I started to realize the Standard Model is anything but standard: it is just a weird collection of mini-theories that are loosely connected to one another – if connected at all! I started buying more modern textbooks – like Aitchison’s and Hey’s Gauge Theories, which is apparently the standard for grad students in physics – but that did not help. I got stuck in the first chapter already: this Yukawa potential – or the concept of a non-conservative nuclear force itself – did not make sense to me. Not only in an intuitive way: the logic and the math of it does not make sense, either!
Fortunately, I reached out and wrote to non-mainstream researchers whose ideas resonated with me. For example, I will be eternally grateful to Dr. Vassallo for his suggestion to read Paolo Di Sia’s paper on the nuclear force, in which he provides heuristic but good arguments showing the nuclear force might just be a dynamic electromagnetic dipole field. So then I found myself in the business of deconstructing the idea of a strong force. A deeper historical analysis of all these new strange quantum numbers and new quantum conservation laws led to the same: I started looking at sensible suggestions to explain what happens or not in terms of electromagnetic disequilibrium states – developing my own fair share of such suggestions – rather than irrationally or uncritically swallowing the idea of hypothetical sub-nuclear particles on which you then load all kinds of equally hypothetical properties.
While I thought I was doing well in terms of pointing out both the good as well as the bad things in Feynman’s Lectures, I suffered from the weirdest thing ever: censorship on the Internet. Some strange caretaker of Feynman’s intellectual heritage apparently used the weight of his MIT-connection to take down substantial parts of many of my blog posts, accusing me of “unfair use” of this 1963 textbook. Unfair use? Over-use, perhaps, but unfair? All was nicely referenced: when you want to talk about quantum physics, you need some reference textbook, right? And Feynman’s Lectures are – or were, I would say now – the reference then. It was ridiculous. Even more so when he went as far as asking YouTube to strike a video of mine. YouTube complied. I laughed: it took me ten minutes or so to re-edit the video – a chance to finally use all that video editing software I have on my laptop 🙂 – and then put it back online. End of problem.
Case closed? I am not sure. I am a pretty cheerful guy, but I am also quite stubborn when I think something isn’t right. So I just carried on and shrugged it all off thinking this would only boost my readership. It probably did, so: Thank You, Mr. Gottlieb! 🙂 But things like that are hurtful. In any case, that doesn’t matter much. What matters is that things like that do reinforce the rather depressing and very poor perception of academic physics that a Sabine Hossenfelder now (very) loudly talks or – should I say: rants? – about: the King of Science is in deep trouble, and there is no easy way out.
So, what is my conclusion then? I am happy I found the answers I was looking for: there is a logical explanation for everything, and that explanation has been there for about 100 years now: Max Planck, Albert Einstein, H.A. Lorentz, Louis de Broglie, Erwin Schrödinger, Arthur Compton and then some more geniuses of those times have probably said all one can say about it all. And it makes sense. In contrast, I feel the past fifty years of mainstream research were probably nothing more than a huge waste of human intellect. Am I right? Am I wrong? Only the future can tell. To be frank, I am not too worried about it.
I may add one anecdote, perhaps. I did talk to my own son six or seven years ago about what he’d like to study. He was most interested in engineering, but we did talk about the more fundamental study of physics. I told him to surely not study that. In his first year of his Master’s degree, he had to do one course in quantum physics. We walked through it together, and he passed with flying colors. However, he also told me then he now fully understood why I had told him to surely not go for theoretical studies in physics: it just does not make all that much sense. If you would happen to be very young and you want to study something useful, then go for applied science: chemistry, biology or – when you are really smart – engineering or medicine. Something like that. If you want to do physics, go join CERN or something: they probably value engineers or technicians more than theorists there, too! 🙂
Personal note: As for myself, I wanted to study philosophy when I was about 15 years old (so that’s 40 years ago now). I did that eventually, but in evening classes, and only after I did what my good old dad (he died from old age about twenty years ago) then told me to do: study something useful first. I was not all that good with math, so I chose economics. I did not regret that. I even caught up with the math because the math – including statistical modeling! – that you need to understand physics is pretty much what you need in econometric modeling too. So I’ll conclude with a wise saying: all’s well that ends well. 🙂
Using AI for sense-making once more…
As mentioned in my last post, I did a video (YouTube link here) on why I think the invention of new quantum numbers like strangeness, charm and beauty in the 1960s – and their later ontologization as quarks – makes no sense. As usual, I talk too much and the video is rather long-winding. I asked ChatGPT to make a summary of it, and I think it did a rather good job at that. I copy its summary unaltered below.
Beyond the Quark Hypothesis: A Call for Simplicity in High-Energy Physics
1. Introduction: A Personal Journey in Physics
In this video, I reflect on my path as an amateur physicist reaching 50,000 reads—a milestone that underscores both excitement and the challenge of tackling complex quantum theories. Over decades, physics has evolved from classical mechanics to intricate frameworks like quantum field theory and quantum chromodynamics, creating both insight and paradox. This reflection emerges from a deep sense of curiosity, shared by many, to understand not just what the universe is made of but how these theoretical structures genuinely map onto reality.
2. The Crisis of Modern Physics: From Classical Mechanics to the Quark Hypothesis
Moving through physics from classical theories into high-energy particle models reveals a stark contrast: classical mechanics offers clarity and empiricism, while modern particle theories, such as quarks and gluons, often feel abstract and detached from observable reality. The shift to “smoking gun physics”—observing particle jets rather than the particles themselves—highlights a methodological divide. While high-energy collisions produce vivid images and data, we must question whether these indirect observations validate quarks, or merely add complexity to our models.
3. Historical Context: Quantum Numbers and the Evolution of the Standard Model
The 1960s and 70s were pivotal for particle physics, introducing quantum numbers like strangeness, charm, and beauty to account for unexplained phenomena in particle interactions. Figures like Murray Gell-Mann and Richard Feynman attempted to classify particles by assigning these numbers, essentially ad hoc solutions to match data with theoretical expectations. However, as experiments push the boundaries, new data shows that these quantum numbers often fail to predict actual outcomes consistently.
One of the key criticisms of this approach lies in the arbitrary nature of these quantum numbers. When certain decays were unobserved, strangeness was introduced as a “conservation law,” but when that proved insufficient, additional numbers like charm were added. The Standard Model has thus evolved not from fundamental truths, but as a patchwork of hypotheses that struggle to keep pace with experimental findings.
4. The Nobel Prize and the Politics of Scientific Recognition
Scientific recognition, especially through the Nobel Prize, has reinforced certain theories by celebrating theoretical advances sometimes over empirical confirmation. While groundbreaking work should indeed be recognized, the focus on theoretical predictions has, at times, overshadowed the importance of experimental accuracy and reproducibility. This dynamic may have inadvertently constrained the scope of mainstream physics, favoring elaborate but tenuous theories over simpler, empirically grounded explanations.
For example, Nobel Prizes have been awarded to proponents of the quark model and the Higgs boson long before we fully understand these particles’ empirical foundations. In doing so, the scientific community risks prematurely canonizing incomplete or even incorrect theories, making it challenging to revisit or overturn these assumptions without undermining established reputations.
5. Indirect Evidence: The Limits of Particle Accelerators
Particle accelerators, particularly at scales such as CERN’s Large Hadron Collider, have extended our observational reach, yet the evidence remains indirect. High-energy collisions create secondary particles and jets rather than isolated quarks or gluons. In a sense, we are not observing the fundamental particles but rather the “smoking gun” evidence they purportedly leave behind. The data produced are complex patterns and distributions, requiring interpretations laden with theoretical assumptions.
This approach raises a fundamental question: if a theory only survives through indirect evidence, can it be considered complete or even valid? High-energy experiments reveal that the more energy we input, the more complex the decay products become, yet we remain without direct evidence of quarks themselves. This “smoking gun” approach diverges from the empirical rigor demanded in classical physics and undermines the predictive power we might expect from a true theory of fundamental particles.
6. The Particle Zoo: A Growing Complexity
The “particle zoo” has expanded over decades, complicating rather than simplifying our understanding of matter. Initial hopes were that quantum numbers and conservation laws like strangeness would organize particles in a coherent framework, yet the resulting classification scheme has only grown more convoluted. Today, particles such as baryons, mesons, and leptons are grouped by properties derived not from first principles but from empirical fits to data, leading to ad hoc conservation laws that seem arbitrary.
The “strangeness” quantum number, for instance, was initially introduced to prevent certain reactions from occurring. Yet, rare reactions that violate this rule have been observed, suggesting that the rule itself is more of a guideline than a fundamental conservation law. This trend continued with the addition of quantum numbers like charm, beauty, and even bottomness, yet these additions have not resolved the core issue: our inability to explain why certain reactions occur while others do not.
7. Disequilibrium States: Beyond the Particle Concept
One possible perspective is to reclassify many “particles” not as fundamental entities but as disequilibrium states—transient structures that emerge from the interactions of more fundamental components. Viewing particles in this way offers a pathway back to a simpler, more intuitive model, where only stable particles like electrons, protons, and photons are foundational. Such a model could focus on electromagnetic fields and forces, with high-energy states representing temporary disequilibrium configurations rather than new particle species.
This perspective aligns well with the principle of statistical determinism. In the same way that classical oscillators eventually dampen and settle into stable states, high-energy disequilibrium states would be expected to decay, producing stable configurations over time. This model not only reduces the need for numerous quantum numbers but also sidesteps the requirement for exotic forces like the strong and weak nuclear forces, allowing the electromagnetic force to assume a central role.
8. Statistical Determinism and Quantum Reality
Heisenberg and Bohr’s interpretation of quantum mechanics suggests we should accept statistical determinism—systems governed by probabilistic rules where precise knowledge of individual events is inaccessible. This idea does not necessitate mystical randomness but acknowledges our limited ability to track initial conditions in high-energy environments. Probabilities emerge not from an intrinsic unpredictability but from our practical inability to fully specify a system’s state.
From this viewpoint, quarks and gluons, as well as the numerous quantum numbers assigned to unstable particles, are secondary descriptors rather than primary components of nature. Stable particles are the true constants, while all else is a function of high-energy interactions. This interpretation keeps quantum mechanics grounded in empirical reality and sidesteps the need for complex, unverifiable entities.
9. Conclusion: Toward a Pragmatic and Local Realist Approach
This reflection does not dismiss the importance of high-energy physics but advocates a return to fundamental principles. By focusing on empirical evidence, statistical determinism, and electromagnetic interactions, we can build a model that is both pragmatic and intuitive. We need not abandon quantum mechanics, but we should strive to ensure that its interpretations are consistent with the observable universe. Instead of introducing additional quantum numbers or forces, we should ask if these are placeholders for deeper, more coherent explanations yet to be discovered.
The journey of science is, at its core, a journey back to simplicity. If physics is to move forward, it may do so by revisiting foundational assumptions, clarifying what can be empirically tested, and developing a model of matter that resonates with the simplicity we find in classical theories. As research continues, it is this blend of skepticism, open-mindedness, and empirical rigor that will pave the way for meaningful discoveries.
The failure of physics as a science?
It is a coincidence but Sabine Hossenfelder just produced a new video in which she talks once again about the problems of academic physics, while I did what I said what I would not do – and that is to write out why the discovery of new rare kaon decay modes is a problem for the Standard Model. I think the video and the paper complement each other nicely, although Sabine Hossenfelder probably still believes the strong force and weak interactions are, somehow, still real. [I did not read her book, so I don’t know: I probably should buy her book but then one can only read one book at a time, isn’t it?]
The paper (on ResearchGate – as usual: link here) does what Sabine Hossenfelder urges her former colleagues to do: if a hypothesis or an ad hoc theory doesn’t work, then scientists should be open and honest about that and go back to the drawing board. Indeed, in my most-read paper – on de Broglie’s matter-wave – I point out how de Broglie’s original thesis was misinterpreted and how classical quantum theory suddenly makes sense again when acknowledging that mistake: it probably explains why I am getting quite a lot of reads as an amateur physicist. So what’s this new paper of mine all about?
I go back to the original invention of the concept of strangeness, as documented by Richard Feynman in his 1963 Lectures on quantum physics (Vol. III, Chapter 11-5) and show why and how it does not make all that much sense. In fact, I always thought these new quantum conservation laws did not make sense theoretically and that, at best, they were or are what Dr. Kovacs and Dr. Vassallo refer to as phenomenological models rather than sound physical theories (see their chapter on superconductivity in their latest book). However, now it turns out these fancy new concepts do not even do what they are supposed to do, and that is to correctly describe the phenomenology of high-energy particle reactions.
The alternative – a realist interpretation of quantum physics – is there. It is just not mainstream – yet! 🙂
Post scriptum (8 November 2024): For those who do not like to read, you can also watch what I think of my very last video on the same topic: what makes sense and what does not in academic or mainstream physics? Enjoy and, most importantly, do not take things too seriously ! Life family and friends – and work or action-oriented engagement are far more important than personal philosophy or trying to finding truth in science… 🙂
Using AI to solve the 80-year-old problem of the anomaly of the electron magnetic moment?
Pre-scriptum (3 October 2024): I came back from holiday and, because this week-long up and down became quite convoluted, I did what I like to do in a case like that, and that is to take my Bamboo notebook and talk about it all in a video which I added to my Real Quantum Physics channel on YouTube. I also updated my paper on RG: as usual, it went through a few versions, but this one – with a summary co-authored by ChatGTP-4 (and ChatGPT-o1) – should be the final one: enjoy!
Indeed, instead of listening to the international news on the war with Russia and on what is happening in the Middle East (all very depressing), you may want to listen to this and read the latest theory. Perhaps you will be inspired by it to develop your own pet realist theory of what an electron might actually be. I can assure you that it is more fun than trying to understand Feynman diagrams and how QED calculations work. 🙂 But don’t think you will win a Nobel Prize if you do not have the right connections and pedigree and all of that: see this analysis of what makes Nobel Prize winners Nobel Prize winners. 🙂
Original post:
I asked some questions to ChatGPT about my geometric explanation of the anomaly in the electron’s magnetic moment. Here is the chat: https://chatgpt.com/share/66f91760-68b8-8004-8cb2-7d2d3624e0aa. To me, it confirms the ‘explanation’ of mainstream QED makes no sense. We can take Schwinger’s factor and build a series of converging terms using that factor. We can also take my first rough cut at a first-order correction (π(alpha)2/8, see my very early 2019 paper on a classical explanation of the amm), and use that.
You may wonder: why not ask ChatGPT about the best first-order factor to be used here considering the geometry of the situation? The fact is: I did, but the geometry is not all that easy. It first came up with the formula for a spherical cap, but that one does not do the trick. See the latter part of the conversation (link above).
I am on holiday now, and so I will switch off a while but I am thinking AI will do what two generations of ‘new’ quantum physicists did not do: come up with a model that is based on real physics and is easy to understand intuitively. 🙂
PS: Of course, I did another rapid-fire paper on ResearchGate to document it all (the logic step-by-step, so to speak). As the chat is public, feel free to continue the conversation. Note that I used the newest ChatGPT o1 version, now in preview but part of a subscription (which you may not have). Yet again a different beast! The older versions of ChatGPT may not be so smart. This conversation is totally worth the US$20/month I pay for my subscription. 🙂
PS 2: Now that I had it open, I also quickly queried it on my wildest hypothesis: a ‘mirror’ electromagnetic force explaining dark matter and dark energy. While it is totally wild (read: nuts), I entertain it because it does away with the need for an explanation in terms of some cosmological constant. Here is the conversation: https://chatgpt.com/share/66f92c7f-82a0-8004-a226-bde65085f18d. I like it that ChatGPT warns me a bit about privacy. It does look wild. However, it is nice to see how gentle ChatGPT is in pointing out what work needs to be done on a theory in order to make it look somewhat less wild. 🙂
PS 3 (yes, ChatGPT is addictive): I also queried it on the rather puzzling 8π/3 factor in the CODATA formula for the Thomson photon-electron scattering cross-section. See its response to our question in the updated chat: https://chatgpt.com/share/66f91760-68b8-8004-8cb2-7d2d3624e0aa. Just scroll down to the bottom. It took 31 seconds to generate the reply: I would be curious to know if that is just courtesy from ChatGPT (we all like to think our questions are complicated, don’t we?), or if this was effectively the time it needed to go through its knowledge base. Whatever the case might be, we think it is brilliant. 🙂 It is nothing to be afraid of, although I did feel a bit like: what’s left to learn to it but for asking intelligent questions. What if it starts really learning by asking intelligent questions itself to us? I am all ready for it. 🙂
The metaphysics of physics
I added a very last paper to my list on ResearchGate. Its title is: what about multi-charge Zitterbewegung models? Indeed, if this local and realist interpretation of quantum mechanics is to break through, then it is logical to wonder about a generalization of a model involving only one charge: think of an electron (e.g., Consa, 2018) or proton model (e.g., Vassallo & Kovacs, 2023) here. With a generalization, we do not mean some unique general solution for all motion, but just what would result from combining 1-charge models into structures with two or more charges. [Just to be sure, we are not talking about electron orbitals here: Schrödinger’s equation models these sufficiently well. No. We are talking about the possible equations of motion of the charges in a neutron, the deuteron nucleus, and a helium-3 or helium-4 nucleus.]
So our question in this paper is this: how do we build the real world from elementary electron and proton particle models? We speculate about that using our own simplified models, which boil down to two geometrical elements: (i) the planar or 2D ring current of the zbw electron, and (ii) the three-dimensional Lissajous trajectory on a sphere which we think might make sense when modeling the orbital of the zbw charge in a proton. Both have the advantage they involve only one frequency rather than the two frequencies (or two modes of oscillation) one sees in helical or toroidal models. Why do we prefer to stick to the idea of one frequency only, even if we readily admit helical or toroidal models are far more precise in terms of generating the experimentally measured value of the magnetic moment of electrons and protons, respectively? The answer is simple: I am just an amateur and so I like to roll with very simple things when trying to tackle something difficult. 🙂
So, go and have a look at our reflections on multi-charge Zitterbewegung models – if only because we also started writing about the history of the Zitterbewegung interpretation and a few other things. To sum it up:
- The paper offers a new brief history of how interpretations of the new quantum physics evolved, and why I am with Schrödinger’s Zitterbewegung hypothesis: it just explains the (possible) structure of elementary particles so well.
- It speculates about how positive and negative charge may combine in a neutron, and then also about how a deuteron nucleus might look like.
- We did not get to specific suggestions for helium-3 and helium-4 nuclei because these depend on how you think about the neutron and the deuteron nucleus. However, I do spell out why and how about I think of a neutron playing the role I think it plays in a nucleus: the glue that holds protons together (so there is no need for quark-gluon theory, I think, even if I do acknowledge the value of some triadic color scheme on top of the classical quantum numbers).
- Indeed, despite my aversion of the new metaphysics that crept into physics in the 1970s, I explain why the idea of some color typing (not a color charge but just an extra triadic classification of charge) might still be useful. [I secretly hope this may help me to understand why this color scheme was introduced in the 1970s, because I do not see it as anything more than mathematical factoring of matrix equations describing disequilibrium states – which may be impossible to solve.]
Have a look, even if it is only to appreciate some of the 3D images of what I think as elementary equations of motion (I copy some below). I should do more with these images. Some art, perhaps, using OpenAI’s DALL·E image generator. Who knows: perhaps AI may, one day, solve the n-body problems I write about and, thereby, come up with the ultimate interpretation of quantum mechanics?
That sounds crazy but, from one or two conversations (with real people), it looks like I am not alone with that idea. 🙂 There are good reasons why CERN turned to AI a few years ago: for the time being, they use it to detect anomalies in the jets that come out of high-energy collissions, but – who knows? – perhaps a more advanced AI Logic Theorist programme could simplify the rather messy quark-gluon hypothesis some day?
Because I am disengaging from this field (it is mentally exhausting, and one gets stuck rather quickly), I surely hope so.



Post scriptum
A researcher I was in touch with a few years ago sent me a link to the (virtual) Zitter Institute: https://www.zitter-institute.org/. It is a network and resource center for non-mainstream physicists who succesfully explored – and keep exploring, of course – local/realist interpretations of quantum mechanics by going back to Schrödinger’s original and alternative interpretation of what an electron actually is: a pointlike (but not infinitesimally small) charge orbiting around in circular motion, with:
(i) the trajectory of its motion being determined by the Planck-Einstein relation, and
(ii) an energy – given by Einstein’s mass-energy equivalence relation – which perfectly fits Wheeler’s “mass-without-mass” idea.
I started exploring Schrödinger’s hypothesis myself about ten years ago – as a full-blown alternative to the Bohr-Heisenberg interpretation of quantum mechanics (which I think of as metaphysical humbug, just like Einstein and H.A. Lorentz at the time) – and consistently blogged and published about it: here on this website, and then on viXra, Academia and, since 2020, ResearchGate. So I checked out this new site, and I see the founding members added my blog site as a resource to their project list.
[…]
I am amazingly pleased with that. I mean… My work is much simpler than that of, say, Dr. John G. Williamson (CERN/Philips Research Laboratories/Glasgow University) and Dr. Martin B. van der Mark (Philips Research Laboratories), who created the Quantum Bicycle Society (https://quicycle.com/).
So… Have a look – not at my site (I think I did not finish the work I started) but at the other resources of this new Institute: it looks like this realist and local interpretation of quantum mechanics is no longer non-mainstream… Sweet ! It makes me feel the effort I put into all of this has paid off ! 😉 Moreover, some of my early papers (2018-2020) are listed as useful papers to read. I think that is better than being published in some obscure journal. 🙂
I repeat again: my own research interest has shifted to computer science, logic and artificial intelligence now (you will see recent papers on my RG site are all about that now). It is just so much more fun and it also lines up better with my day job as a freelance IT project manager. So, yes, it is goodbye – but I am happy I can now refer all queries about my particle models and this grand synthesis between old and new quantum mechanics to the Zitter Institute.
It’s really nice: I have been in touch with about half of the founding members of this Institute over the past ten years – casually or in a more sustained way while discussing this or that 2D or 3D model of an electron, proton, or neutron), and they are all great and amazing researchers because they look for truth in science and are very much aware of this weird tendency of modern-day quantum scientists turning their ideas into best-sellers perpetuating myths and mysteries. [I am not only thinking of the endless stream of books from authors like Roger Penrose (the domain for this blog was, originally, reading Penrose rather than reading Feynman) or Graham Greene here, but also of what I now think of rather useless MIT or edX online introductions to quantum physics and quantum math.]
[…]
Looking at the website, I see the engine behind it: Dr. Oliver Consa. I was in touch with him too. He drew my attention to remarkable flip-flop articles such as William Lamb’s anti-photon article (it is an article which everyone should read, I think: unfortunately, you have to pay for it) and remarkable interviews with Freeman Dyson. Talking of the latter (I think of as “the Wolfgang Pauli of the third generation of quantum physicists” because he helped so many others to get a Nobel Prize before he got one – Dyson never got a Nobel Prize, by the way), this is one of these interviews you should watch: just four years before he would die from old age, Freeman Dyson plainly admits QED and QFT is a totally unproductive approach: a “dead end” as Dyson calls it.
So, yes, I am very pleased and happy. It makes me feel my sleepness nights and hard weekend work over the past decade on this has not been in vain ! Paraphrasing Dyson in the above-mentioned video interview, I’d say: “It is the end of the story, and that particular illumination was a very joyful time.” 🙂
Thank you, Dr. Consa. Thank you, Dr. Vassallo, Dr. Burinskii, Dr. Meulenberg, Dr. Kovacs, and – of course – Dr. Hestenes – who single-handedly revived the Zitterbewegung interpretation of quantum mechanics in the 1990s. I am sure I forgot to mention some people. Sorry for that. I will wrap up my post here by saying a few more words about David Hestenes.
I really admire him deeply. Moving away from the topic of high-brow quantum theory, I think his efforts to reform K-12 education in math and physics is even more remarkable than the new space-time algebra (STA) he invented. I am 55 years old and so I know all about the small and pleasant burden to help kids with math and statistics in secondary school and at university: the way teachers now have to convey math and physics to kids now is plain dreadful. I hope it will get better. It has to. If the US and the EU want to keep leading in research, then STEM education (Science, Technology, Engineering, and Mathematics) needs a thorough reform.
No reading of Feynman anymore…
I have not posted in a while, and that is because I find the format of a video much easier to express my thoughts. Have a look at my YouTube channel ! Also, for the more serious work, I must refer to my ResearchGate page. Have fun thinking things through ! 🙂
The metaphysics of physics: final thoughts
I wrote my last post here two months ago and so, yes, I feel I have done a good job of ‘switching off’. I have to: I’ve started a new and pretty consuming job as ICT project manager. 🙂
Before starting work, I did take a relaxing break: I went to Barcelona and read quite a few books and, no, no books on quantum physics. Historical and other things are more fun and give you less of a headache.
However, having said that, the peace and quiet did lead to some kind of ‘final thoughts’ on the ‘metaphysics of physics’, and I also did what I never did in regard to my intuition that dark matter/energy might be explained by some kind of ‘mirror force’: the electromagnetic force as it appears in a mirror image. Not much change in the math, but physical left- and right-hand rules for magnetic effects that just swap for each other.
You can find the results of that in a very concise (four pages only) paper on my ResearchGate site, and also in two lectures (each a bit more than one hour) on my YouTube channel. The first video focuses on ‘big questions’, while the second one talks about this ‘mirror’ force (I previously referred to it as a ‘anti-force’ but I realize that’s not a good term), and on how that would fit with Maxwell’s equations (including Maxwell’s equation written in four-vector algebra).
Have fun and keep thinking. Most importantly: keep thinking for yourself ! Do not take anything for granted in this brave new world. 🙂
Another tainted Nobel Prize…
Last year’s (2022) Nobel Prize in Physics went to Alain Aspect, John Clauser, and Anton Zeilinger for “for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science.”
I did not think much of that award last year. Proving that Bell’s No-Go Theorem cannot be right? Great. Finally! I think many scientists – including Bell himself – already knew this theorem was a typical GIGO argument: garbage in, garbage out. As the young Louis de Broglie famously wrote in the introduction of his thesis: hypotheses are worth only as much as the consequences that can be deduced from it, and the consequences of Bell’s Theorem did not make much sense. As I wrote in my post on it, Bell himself did not think much of his own theorem until, of course, he got nominated for a Nobel Prize: it is a bit hard to say you got nominated for a Nobel Prize for a theory you do not believe in yourself, isn’t it? In any case, Bell’s Theorem has now been experimentally disproved. That is – without any doubt – a rather good thing. 🙂 To save the face of the Nobel committee here (why award something that disproves something else that you would have given an award a few decades ago?): Bell would have gotten a Nobel Prize, but he died from brain hemorrhage before, and Nobel Prizes reward the living only.
As for entanglement, I repeat what I wrote many times already: the concept of entanglement – for which these scientists got a Nobel Prize last year – is just a fancy word for the simultaneous conservation of energy, linear and angular momentum (and – if we are talking matter-particles – charge). There is ‘no spooky action at a distance’, as Einstein would derogatorily describe it when the idea was first mentioned to him. So, I do not see why a Nobel Prize should be awarded for rephrasing a rather logical outcome of photon experiments in metamathematical terms.
Finally, the Nobel Prize committee writes that this has made a significant contribution to quantum information science. I wrote a paper on the quantum computing hype, in which I basically ask this question: qubits may or may not be better devices than MOSFETs to store data – they are not, and they will probably never be – but that is not the point. How does quantum information change the two-, three- or n-valued or other rule-based logic that is inherent to the processing of information? I wish the Nobel Prize committee could be somewhat more explicit on that because, when everything is said and done, one of the objectives of the Prize is to educate the general public about the advances of science, isn’t it?
However, all this ranting of mine is, of course, unimportant. We know that it took the distinguished Royal Swedish Science Academy more than 15 years to even recognize the genius of an Einstein, so it was already clear then that their selection criteria were not necessarily rational. [Einstein finally got a well-deserved Nobel Prize, not for relativity theory (strangely enough: if there is one thing on which all physicist are agreed, it is that relativity theory is the bedrock of all of physics, isn’t it?), but for a much less-noted paper on the photoelectric effect – in 1922: 17 years after his annus mirabilis papers had made a killing not only in academic circles but in the headlines of major newspapers as well, and 10 years after a lot of fellow scientists had nominated him for it (1910).]
Again, Mahatma Gandhi never got a Nobel Price for Peace (so Einstein should consider himself lucky to get some Nobel Prize, right?), while Ursula von der Leyen might be getting one for supporting the war with Russia, so I must remind myself of the fact that we do live in a funny world and, perhaps, we should not be trying to make sense of these rather weird historical things. 🙂
Let me turn to the main reason why I am writing this indignant post. It is this: I am utterly shocked by what Dr. John Clauser has done with his newly gained scientific prestige: he joined the CO2 coalition! For those who have never heard of it, it is a coalition of climate change deniers. A bunch of people who:
(1) vehemently deny the one and only consensus amongst all climate scientists, and that is the average temperature on Earth has risen with about two degrees Celsius since the Industrial Revolution, and
(2) say that, if climate change would be real (God forbid!), then we can reverse the trend by easy geo-engineering. We just need to use directed energy or whatever to create more white clouds. If that doesn’t work, then… Well… CO2 makes trees and plants grow, so it will all sort itself out by itself.
[…]
Yes. That is, basically, what Dr. Clauser and all the other scientific advisors of this lobby group – none of which have any credentials in the field they are criticizing (climate science) – are saying, and they say it loud and clearly. That is weird enough, already. What is even weirder, is that – to my surprise – a lot of people are actually buying such nonsense.
Frankly, I have not felt angry for a while, but this thing triggered an outburst of mine on YouTube, in which I state clearly what I think of Dr. Clauser and other eminent scientists who abuse their saint-like Nobel Prize status in society to deceive the general public. Watch my video rant, and think about it for yourself. Now, I am not interested in heated discussions on it: I know the basic facts. If you don’t, I listed them here. Look at the basic graphs and measurements before you would want to argue with me on this, please! To be clear on this: I will not entertain violent or emotional reactions to this post or my video. Moreover, I will delete them here on WordPress and also on my YouTube channel. Yes. For the first time in 10 years or so, I will exercise my right as a moderator of my channels, which is something I have never done before. 🙂
[…]
I will now calm down and write something about the mainstream interpretation of quantum physics again. 🙂 In fact, this morning I woke up with a joke in my head. You will probably think the joke is not very good, but then I am not a comedian and so it is what it is and you can judge for yourself. The idea is that you’d learn something from it. Perhaps. 🙂 So, here we go.
Imagine shooting practice somewhere. A soldier fires at some target with a fine gun, and then everyone looks at the spread of the hits around the bullseye. The quantum physicist says: “See: this is the Uncertainty Principle at work! What is the linear momentum of these bullets, and what is the distance to the target? Let us calculate the standard error.” The soldier looks astonished and says: “No. This gun is no good. One of the engineers should check it.” Then the drill sergeant says this: “The gun is fine. From this distance, all bullets should have hit the bullseye. You are a miserable shooter and you should really practice a lot more.” He then turns to the academic and says: “How did you get in here? I do not understand a word of what you just said and, if I do, it is of no use whatsoever. Please bugger off asap!”
This is a stupid joke, perhaps, but there is a fine philosophical point to it: uncertainty is not inherent to Nature, and it also serves no purpose whatsoever in the science of engineering or in science in general. All in Nature is deterministic. Statistically deterministic, but deterministic nevertheless. We do not know the initial conditions of the system, perhaps, and that translates into seemingly random behavior, but if there is a pattern in that behavior (a diffraction pattern, in the case of electron or photon diffraction), then the conclusion should be that there is no such thing as metaphysical ‘uncertainty’. In fact, if you abandon that principle, then there is no point in trying to discover the laws of the Universe, is there? Because if Nature is uncertain, then there are no laws, right? 🙂
To underscore this point, I will, once again, remind you of what Heisenberg originally wrote about uncertainty. He wrote in German and distinguished three very different ideas of uncertainty:
(1) The precision of our measurements may be limited: Heisenberg originally referred to this as an Ungenauigkeit.
(2) Our measurement might disturb the position and, as such, cause the information to get lost and, as a result, introduce an uncertainty in our knowledge, but not in reality. Heisenberg originally referred to such uncertainty as an Unbestimmtheit.
(3) One may also think the uncertainty is inherent to Nature: that is what Heisenberg referred to as Ungewissheit. There is nothing in Nature – and also nothing in Heisenberg’s writings, really – that warrants the elevation of this Ungewissheit to a dogma in modern physics. Why? Because it is the equivalent of a religious conviction, like God exists or He doesn’t (both are theses we cannot prove: Ryle labeled such hypotheses as ‘category mistakes’).
Indeed, when one reads the proceedings of the Solvay Conferences of the late 1920s, 1930s and immediately after WW II (see my summary of it in https://www.researchgate.net/publication/341177799_A_brief_history_of_quantum-mechanical_ideas), then it is pretty clear that none of the first-generation quantum physicists believed in such dogma and – if they did – that they also thought what I am writing here: that it should not be part of science but part of one’s personal religious beliefs.
So, once again, I repeat that this concept of entanglement – for which John Clauser got a Nobel Prize last year – is in the same category: it is just a fancy word for the simultaneous conservation of energy, linear and angular momentum, and charge. There is ‘no spooky action at a distance’, as Einstein would derogatorily describe it when the idea was first mentioned to him.
Let me end by noting the dishonor of Nobel Prize winner John Clauser once again. Climate change is real: we are right in the middle of it, and it is going to get a lot worse before it gets any better – if it is ever going to get better (which, in my opinion, is a rather big ‘if‘…). So, no matter how many Nobel Prize winners deny it, they cannot change the fact that average temperature on Earth has risen by about 2 degrees Celsius since 1850 already. The question is not: is climate change happening? No. The question now is: how do we adapt to it – and that is an urgent question – and, then, the question is: can we, perhaps, slow down the trend, and how? In short, if these scientists from physics or the medical field or whatever other field they excel in are true and honest scientists, then they would do a great favor to mankind not by advocating geo-engineering schemes to reverse a trend they actually deny is there, but by helping to devise and promote practical measures to allow communities that are affected by natural disaster to better recover from them.
So, I’ll conclude this rant by repeating what I think of all of this. Loud and clear: John Clauser and the other scientific advisors of the CO2 coalition are a disgrace to what goes under the name of ‘science’, and this umpteenth ‘incident’ in the history of science or logical thinking makes me think that it is about time that the Royal Swedish Academy of Sciences does some serious soul-searching when, amongst the many nominations, it selects its candidates for a prestigious award like this. Alfred Nobel – one of those geniuses who regretted his great contribution to science and technology was (also) (ab)used to increase the horrors of war – must have turned too many times in his grave now…
The End of Physics
I wrote a post with this title already, but this time I mean it in a rather personal way: my last paper – with the same title – on ResearchGate sums up rather well whatever I achieved, and also whatever I did not explore any further because time and energy are lacking: I must pay more attention to my day job nowadays. 🙂
I am happy with the RG score all of my writing generated, the rare but heartfelt compliments I got from researchers with far more credentials than myself (such as, for example, Dr. Emmanouil Markoulakis of Nikolaos, which led me to put a paper on RG with a classical explanation of the Lamb shift), various friendly but not necessarily always agreeing commentators (one of them commenting here on this post: a good man!), and, yes, the interaction on my YouTube channel. But so… Well… That is it, then! 🙂
As a farewell, I will just quote from the mentioned paper – The End of Physics (only as a science, of course) – hereunder, and I hope that will help you to do what all great scientists would want you to do, and that is to think things through for yourself. 🙂
Brussels, 22 July 2023
Bohr, Heisenberg, and other famous quantum physicists – think of Richard Feynman, John Stewart Bell, Murray Gell-Mann, and quite a few other Nobel Prize winning theorists[1] – have led us astray. They swapped a rational world view – based on classical electromagnetic theory and statistical determinism – for a mystery world in which anything is possible, but nothing is real.
They invented ‘spooky action at a distance’ (as Einstein derogatorily referred to it), for example. So, what actually explains that long-distance interaction, then? It is quite simple. There is no interaction, and so there is nothing spooky or imaginary or unreal about it: if by measuring the spin state of one photon, we also know the spin state of its twin far away, then it is – quite simply – because physical quantities such as energy and momentum (linear or angular) will be conserved if no other interference is there after the two matter- or light-particles were separated.
Plain conservation laws explain many other things that are being described as ‘plain mysteries’ in quantum physics. The truth is this: there are no miracles or mysteries: everything has a physical cause and can be explained.[2] For example, there is also nothing mysterious about the interference pattern and the trajectory of an electron going through a slit, or one of two nearby slits. An electron is pointlike, but it is not infinitesimally small: it has an internal structure which explains its wave-like properties. Likewise, Mach-Zehnder one-photon interference can easily be explained when thinking of its polarization structure: a circularly polarized photon can be split in two linearly polarized electromagnetic waves, which are photons in their own right. Everything that you have been reading about mainstream quantum physics is, perhaps, not wrong, but it is highly misleading because it is all couched in guru language and mathematical gibberish.
Why is that mainstream physicists keep covering up? I am not sure: it is a strange mix of historical accident and, most probably, the human desire to be original or special, or the need to mobilize money for so-called fundamental research. I also suspect there is a rather deceitful intention to hide truths about what nuclear science should be all about, and that is to understand the enormous energies packed into elementary particles.[3]
The worst of all is that none of the explanations in mainstream quantum physics actually works: mainstream theory does not have a sound theory of signal propagation, for example (click the link to my paper on that or – better, perhaps – this link to our paper on signal propagation), and Schrödinger’s hydrogen model is a model of a hypothetical atom modelling orbitals of equally hypothetical zero-spin electron pairs. Zero-spin electrons do not exist, and real-life hydrogen only has one proton at its center, and one electron orbiting around it. Schrödinger’s equation is relativistically correct – even if all mainstream physicists think it is not – but the equation includes two mistakes that cancel each other out: it confuses the effective mass of an electron in motion with its total mass[4], and the 1/2 factor which is introduced by the m = 2meff substitution also takes care of the doubling of the potential that is needed to make the electron orbitals come out alright.
The worst thing of all is that mainstream quantum physicists never accurately modeled what they should have modeled: the hydrogen atom as a system of a real proton and a real electron (no hypothetical infinitesimally and structureless spin-zero particles). If they had done that, they would also be able to explain why hydrogen atoms come in molecular H2 pairs, and they would have a better theory of why two protons need a neutron to hold together in a helium nucleus. Moreover, they would have been able to explain what a neutron actually is.[5]
[1] James Stewart Bell was nominated for a Nobel Prize, but died from a brain hemorrhage before he could accept the prize for his theorem.
[2] The world of physics – at the micro-scale – is already fascinating enough: why should we invent mysteries?
[3] We do not think these energies can be exploited any time soon. Even nuclear energy is just binding energy between protons and neutrons: a nuclear bomb does not release the energy that is packed into protons. These elementary particles survive the blast: they are the true ‘atoms’ of this world (in the Greek sense of ‘a-tom’, which means indivisible).
[4] Mass is a measure of the inertia to a change in the state of motion of an oscillating charge. We showed how this works by explaining Einstein’s mass-energy equivalence relation and clearly distinguishing the kinetic and potential energy of an electron. Feynman first models an electron in motion correctly, with an equally correct interpretation of the effective mass of an electron in motion, but then substitutes this effective mass by half the electron mass (meff = m/2) in an erroneous reasoning process based on the non-relativistic kinetic energy concept. The latter reasoning also leads to the widespread misconception that Schrödinger’s equation would not be relativistically correct (see the Annexes to my paper on the matter-wave). For the trick it has to do, Schrödinger’s wave equation is correct – and then I mean also relativistically correct. 🙂
[5] A neutron is unstable outside of its nucleus. We, therefore, think it acts as the glue between protons, and it must be a composite particle.
On the quantum computing hype
1. The Wikipedia article on quantum computing describes a quantum computer as “a computer that exploits quantum -mechanical phenomena.” The rest of the article then tries to explain what these quantum-mechanical phenomena actually are.
Unfortunately, the article limits itself to the mainstream interpretation of these and, therefore, suffers from what I perceive to be logical and philosophical errors. Indeed, in the realistic interpretation of quantum mechanics that I have been developing, system wavefunctions are only useful to model our own uncertainty about the system. I subscribe to Hendrik Antoon Lorentz’s judgment at the last Solvay Conference under his leadership: there is no need whatsoever to elevate indeterminism to a philosophical principle. Not in science in general, and not in quantum mechanics in particular. I, therefore, think quantum mechanics cannot offer a substantially new computing paradigm.
Of course, one may argue that, for specific problems, some kind of three- or more-valued logic – rather than the binary or Boolean true/false dichotomy on which most logic circuits are based – may come in handy. However, such logic has already been worked out, and can be accessed using appropriate programming languages. Python and the powerful mathematical tools that come with it (Pandas, NumPy and SciPy) work great with ternary logic using a {true, false, unknown} or a {-1, 0, +1} set of logical values rather than the standard {0, 1} Boolean set. The Wikipedia article on three-valued logic is worth a read and, despite the rather arcane nature of the topic, much better written than the mentioned article: have a look at how operators are used on these three-valued sets in meaningful algebras or logical models, such as that of Kleene, Priest or Lukasiewicz.
2. One may, of course, argue that, even when there is probably no such thing as a new logical quantum computing model or logic, quantum technology may offer distinct advantages when it comes to storage of data about this or that state or, one day, lead to devices with faster clock and/or bus speeds. That appears to be a pipedream too:
- To keep, say, an electron in this or that spin state, one must create and steady an electromagnetic field – usually one does so in a superconducting environment, which makes actual mechanical devices used for quantum computing (qubits) look like the modern-day equivalent of Babbage’s analytical machine. In my not-so-humble view, such devices will never ever achieve the sheer material performance offered by current nanometer-scale MOSFETs.
- As for bus or transmission speeds, quantum theory does not come with a new theory of charge propagation and, most importantly, is fundamentally flawed in its analysis of how signals actually propagate in, say, a lattice structure. I refer to one of my papers here (on electron propagation in a lattice), in which I deconstruct Feynman’s analysis of the concept of the free and effective mass of an electron. Hence, for long-distance transmission of signals, optical fiber cannot be beaten. For short-distance transmission of signals (say, within an electrical circuit, I refer to the above-mentioned nano-technology which continues to revolutionize the chip industry.
Brussels, 4 July 2023
Epilogue: an Easter podcast
I have been thinking on my explanation of dark matter/energy, and I think it is sound. It solves the last asymmetry in my models, and explains all. So, after a hiatus of two years, I bothered to make a podcast on my YouTube channel once again. It talks about everything. Literally everything !
It makes me feel my quest for understanding of matter and energy – in terms of classical concepts and measurements (as depicted below) – has ended. Perhaps I will write more but that would only be to promote the material, which should promote itself if it is any good (which I think it is).

I should, by way of conclusion, say a few final words about Feynman’s 1963 Lectures now. When everything is said and done, it is my reading of them which had triggered this blog about ten years ago. I would now recommend Volume I and II (classical physics and electromagnetic theory) – if only because it gives you all the math you need to understand all of physics – but not Volume III (the lectures on quantum mechanics). They are outdated, and I do find Feynman guilty of promoting rather than explaining the hocus-pocus around all of the so-called mysteries in this special branch of physics.
Quantum mechanics is special, but I do conclude now that it can all be explained in terms of classical concepts and quantities. So, Gell-Mann’s criticism of Richard Feynman is, perhaps, correct: Mr. Feynman did, perhaps, make too many jokes – and it gets annoying because he must have known some of what he suggests does not make sense – even if I would not go as far as Gell-Mann, who says “Feynman was only concerned about himself, his ego, and his own image !”
So, I would recommend my own alternative series of ‘lectures’. Not only are they easier to read, but they also embody a different spirit of writing. Science is not about you, it is about thinking for oneself and deciding on what is truthful and useful, and what is not. So, to conclude, I will end by quoting Ludwig Boltzmann once more:
“Bring forward what is true.
Write it so that it is clear.
Defend it to your last breath.”
Ludwig Boltzmann (1844 – 1906)
Post scriptum: As for the ‘hocus-pocus’ in Feynman’s Lectures, we should, perhaps, point once again to some of our early papers on the flaws in his arguments. We effectively put our finger on the arbitrary wavefunction convention, or the (false) boson-fermion dichotomy, or the ‘time machine’ argument that is inherent to his explanation of the Hamiltonian, and so on. We published these things on Academia.edu before (also) putting our (later) papers ResearchGate, so please check there for the full series. 🙂
Post scriptum (23 April 2023): Also check out this video, which was triggered by someone who thought my models amount to something like a modern aether theory, which it is definitely not the case: https://www.youtube.com/watch?v=X38u2-nXoto. 🙂 I really think it is my last reflection on these topics. I need to focus on my day job, sports, family, etcetera again ! 🙂
Onwards !
It has been ages since I last wrote something here. Regular work took over. I did do an effort, though, to synchronize and reorganize some stuff. And I am no longer shy about it. My stats on ResearchGate and academia.edu show that I am no longer a ‘crackpot theorist’. This is what I wrote about it on my LinkedIn account:
QUOTE
With good work-life balance now, I picked up one of my hobbies again: research into quantum theories. As for now, I only did a much-needed synchronization of papers on academia.edu and ResearchGate. When logging on the former network (which I had not done for quite a while), I found many friendly messages on it. One of them was from a researcher on enzymes: “I have been studying about these particles for around four years. All of the basics. But wat are they exactly? This though inspired me… Thank u so much!” I smiled and relaxed when I read that, telling myself that all those sleepless nights I spent on this were not the waste of time and energy that most of my friends thought it would be. 🙂
Another one was even more inspiring. It was written by another ‘independent’ researcher. Nelda Evans. No further detail in her profile. From the stats, I could see that she had downloaded an older manuscript of mine (https://lnkd.in/ecRKJwxQ). This is what she wrote about it to me: “I spoke to Richard Feynman in person at the Hughes Research Lab in Malibu California in 1967 where the first pulsed laser was invented when some of the students from the UCLA Physics Dept. went to hear him. Afterward I went to talk to him and said “Dr. Feynman, I’ve learned that some unknown scientists were dissatisfied with probability as a final description of Quantum Mechanics, namely Planck, Einstein, Schrodinger, de Broglie, Bohm,…” When I finished my list he immediately said “And Feynman”. We talked about it a little, and he told me “I like what you pick on.”
My guess is that he might have told you something similar.”
That message touched me deeply, because I do feel – from reading his rather famous Lectures on Physics somewhat ‘between the lines’ – that Richard Feynman effectively knew all but that he, somehow, was not allowed to clearly say what it was all about. I wrote a few things about that rather strange historical bias in the interpretation of ‘uncertainty’ and other ‘metaphysical’ concepts that infiltrated the science of quantum mechanics in my last paper: https://lnkd.in/ewZBcfke.
So… Well… I am not a crackpot scientist anymore ! 🙂 The bottom-line is to always follow your instinct when trying to think clearly about some problem or some issue. We should do what Ludwig Boltzmann (1844-1906) told us to do: “Bring forward what is true. Write it so that it is clear. Defend it to your last breath.”
[…] Next ‘thing to do’, is to chat with ChatGPT about my rather straightforward theories. I want to see how ‘intelligent’ it is. I wonder where it will hit its limit in terms of ‘abstract thinking.’ The models I worked on combine advanced geometrical thinking (building ‘realistic’ particle models requires imagining ‘rotations within rotations’, among other things) and formal math (e.g. quaternion algebra). ChatGPT is excellent in both, I was told, but can it combine the two intelligently? 🙂
UNQUOTE
On we go. When the going gets tough, the tough get going. 🙂 For those who want an easy ‘introduction’ to the work (at a K-12 level of understanding of mathematics), I wrote the first pages of what could become a very new K-12 level textbook on physics. Let us see. I do want to see some interest from a publisher first. 🙂
Pair creation and annihilation
I had been wanting to update my paper on matter-antimatter pair creation and annihilation for a long time, and I finally did it: here is the new version of it. It was one of my early papers on ResearchGate and, somewhat surprising, it got quite a few downloads (all is relative: I am happy with a few thousand). I actually did not know why, but now I understand: it does take down the last defenses of QCD- and QFT-theorists. As such, I now think this paper is at least as groundbreaking as my paper on de Broglie’s matter-wave (which gets the most reads), or my paper on the proton radius (which gets the most recommendations).
My paper on de Broglie’s matter-wave is important because it explains why and how de Broglie’s bright insight (matter having some frequency and wavelength) was correct, but got the wrong interpretation: the frequencies and wavelengths are orbital frequencies, and the wavelengths are are not to be interpreted as linear distances (not like wavelengths of light) but the quantum-mechanical equivalent of the circumferences of orbital radii. The paper also shows why spin (in this or the opposite direction) should be incorporated into any analysis straight from the start: you cannot just ignore spin and plug it in back later. The paper on the proton radius shows how that works to yield short and concise explanations of the measurable properties of elementary particles (the electron and the proton). The two combined provide the framework: an analysis of matter in terms of pointlike particles does not get us anywhere. We must think of matter as charge in motion, and we must analyze the two- or three-dimensional structure of these oscillations, and use it to also explain interactions between matter-particles (elementary or composite) and light-particles (photons and neutrinos, basically). I have explained these mass-without-mass models too many times now, so I will not dwell on it.
So, how that paper on matter-antimatter pair creation and annihilation fit in? The revision resulted in a rather long and verbose thing, so I will refer you to it and just summarize it very briefly. Let me start by copying the abstract: “The phenomenon of matter-antimatter pair creation and annihilation is usually taken as confirmation that, somehow, fields can condense into matter-particles or, conversely, that matter-particles can somehow turn into lightlike particles (photons and/or neutrinos, which are nothing but traveling fields: electromagnetic or, in the case of the neutrino, some strong field, perhaps). However, pair creation usually involves the presence of a nucleus or other charged particles (such as electrons in experiment #E144). We, therefore, wonder whether pair creation and annihilation cannot be analyzed as part of some nuclear process. To be precise, we argue that the usual nuclear reactions involving protons and neutrons can effectively account for the processes of pair creation and annihilation. We therefore argue that the need to invoke some quantum field theory (QFT) to explain these high-energy processes would need to be justified much better than it currently is.”
Needless to say, the last line above is a euphemism: we think our explanation is complete, and that QFT is plain useless. We wrote the following rather scathing appreciation of it in a footnote of the paper: “We think of Aitchison & Hey’s presentation of [matter-antimatter pair creation and annihilation] in their Gauge Theories in Particle Physics (2012) – or presentations (plural), we should say. It is considered to be an advanced but standard textbook on phenomena like this. However, one quickly finds oneself going through the index and scraping together various mathematical treatments – wondering what they explain, and also wondering how all of the unanswered questions or hypotheses (such as, for example, the particularities of flavor mixing, helicity, the Majorana hypothesis, etcetera) contribute to understanding the nature of the matter at hand. I consider it a typical example of how – paraphrasing Sabine Hossenfelder’s judgment on the state of advanced physics research – physicist do indeed tend to get lost in math.”
That says it all. Our thesis is that charge cannot just appear or disappear: it is not being created out of nothing (or out of fields, we should say). The observations (think of pion production and decay from cosmic rays here) and the results of the experiments (the mentioned #E144 experiment or other high-energy experiments) cannot be disputed, but the mainstream interpretation of what actually happens or might be happening in those chain reactions suffers from what, in daily life, we would refer to as ‘very sloppy accounting’. Let me quote or paraphrase a few more lines from my paper to highlight the problem, and to also introduce my interpretation of things which, as usual, are based on a more structural analysis of what matter actually is:
“Pair creation is most often observed in the presence of a nucleus. The role of the nucleus is usually reduced to that of a heavy mass only: it only appears in the explanation to absorb or provide some kinetic energy in the overall reaction. We instinctively feel the role of the nucleus must be far more important than what is usually suggested. To be specific, we suggest pair creation should (also) be analyzed as being part of a larger nuclear process involving neutron-proton interactions. […]”
“Charge does not get ‘lost’ or is ‘created’, but [can] switch its ‘spacetime’ or ‘force’ signature [when interacting with high-energy (anti)photons or (anti)neutrinos].”
“[The #E144 experiment or other high-energy experiments involving electrons] accounts for the result of the experiment in terms of mainstream QED analysis, and effectively thinks of the pair production being the result of the theoretical ‘Breit-Wheeler’ pair production process from photons only. However, this description of the experiment fails to properly account for the incoming beam of electrons. That, then, is the main weakness of the ‘explanation’: it is a bit like making abstraction of the presence of the nucleus in the pair creation processes that take place near them (which, as mentioned above, account for the bulk of those).”
We will say nothing more about it here because we want to keep our blog post(s) short: read the paper! 🙂 To wrap this up for you, the reader(s) of this post, we will only quote or paraphrase some more ontological or philosophical remarks in it:
“The three-layered structure of the electron (the classical, Compton and Bohr radii of the electron) suggest that charge may have some fractal structure and – moreover – that such fractal structure may be infinite. Why do we think so? If the fractal structure would not be infinite, we would have to acknowledge – logically – that some kind of hard core charge is at the center of the oscillations that make up these particles, and it would be very hard to explain how this can actually disappear.” [Note: This is a rather novel new subtlety in our realist interpretation of quantum physics, so you may want to think about it. Indeed, we were initially not very favorable to the idea of a fractal charge structure because such fractal structure is, perhaps, not entirely consistent with the idea of a Zitterbewegung charge with zero rest mass), we think much more favorably of the hypothesis now.]
“The concept of charge is and remains mysterious. However, in philosophical or ontological terms, I do not think of it as a mystery: at some point, we must, perhaps, accept that the essence of the world is charge, and that:
- There is also an antiworld, and that;
- It consists of an anticharge that we can fully define in terms of the signature of the force(s) that keep it together, and that;
- The two worlds can, quite simply, not co-exist or – at least – not interact with each other without annihilating each other.
Such simple view of things must, of course, feed into cosmological theories: how, then, came these two worlds into being? We offered some suggestions on that in a rather simple paper on cosmology (our one and only paper on the topic), but it is not a terrain that we have explored (yet).”
So, I will end this post in pretty much the same way as the old Looney Tunes or Merrie Melodies cartoons used to end, and that’s by saying: “That’s all Folks.” 🙂
Enjoy life and do not worry too much. It is all under control and, if it is not, then that is OK too. 🙂
Post Scriptum (2)
When I wrote my first PS in November last year, I thought it would be my last blog post here – but the stats keep going up. Good enough here on WordPress, and even better on ResearchGate: a 170+ score now and still rising fast: top 1% climber still – despite that I have published nothing since a year now – which got me into the top 25% bracket of RG researchers in less than two years – and, while it is far from going viral, further rise looks a bit inevitable now.
It clearly shows that I am not mad and that you are reading serious physics here – but without the usual hocus-pocus and ‘mystery’ that leaves so many young and-not-so-young people disgusted. I repeat: there is no serious puzzle in physics any more. All that is being done now, is to further work out the consequences of the fundamental laws of physics that were written down about a hundred years ago (de Broglie wrote his thesis in 1924, so this centenary is almost there). For those who are seeking to simplify further by resorting to some kind of ‘meta-symbolism’ or an even more ‘holistic’ perspective (whatever that might mean), I think the exchange below (from my ResearchGate account) might be useful. For the rest, I have nothing to add anymore. It is all there ! 🙂
M (7 days ago): Dear JL – I was amazed to find your piece on the jitter-bugging phenomena [sic] (not hypothesis). I think you may find my more holistic perspective useful in fine-tuning your work. I hope you agree, and I would love to collaborate. After all, as far as I know, your work is the first substantive effort in nearly 60 years+ (in this very fertile direction). Cheers, etc. ~ M
Astronomy_geometry_logic-v.1.pdf
M (7 days ago): Dear JL – Bravo!!! I just saw the abstract of your paper on conserving the enthusiasm of young people afflicted by modern SM-QM nonsense, dogma, etc. I am now even more motivated to have your help reviewing, editing, and developing my next-gen ontology of the cosmos. Cheers ~ M
My rapid-fire answers (yesterday and today):
Txs man ! This developed partly because (1) I had too much time on my hands (a difficult past five years as I came back from abroad and my mom and bro died from cancer – I had to go through cancer surgery myself) and (2) helping my son getting through his exams on quantum physics as part of his engineering studies (he is just as much as a rebel as me and (also) wanted more ‘common-sense’ explanations. The ‘orbital’ or ‘circular’ motion concept for interpreting de Broglie’s wavefunction (orbital frequencies instead of linear ones) is the key to everything. 🙂 No magic. 🙂 Charge and motion are the only concepts that are real. 🙂 There is no copyright to what I produced (a lot is just about building further on strands the ‘Old Great’ (including Schroedinger himself) had in mind) so feel free to use it and further develop. My blog post on Paul Ehrenfest’ s suicide is probably still the most ‘accessible’ introduction to it all. It is also tragic – as tragic (or more, probably) as Dirac’s depression when he sort of ‘turned his back’ on the young wolves he used to support – but still… https://readingfeynman.org/2020/05/27/ehrenfest-and-other-tragedies-in-physics/
[…]
I also did some YouTube videos to ‘market’ it all – but there is only so much one can do. It is a weird situation. APS, WSP and even Springer Verlag wanted to do something with me but they all backed off in the end. Fortunately I do not suffer from much ego (one advantage of my experience in war-torn countries such as Afghanistan and in Ukraine (March)) – so I take everything lightly. My “Post Scriptum” to my papers – https://www.researchgate.net/publication/356556508_Post_Scriptum – is a read of 15 minutes only and guides all of the material. Have fun with it ! Life is short. I know – having come clean out of cancer (unlike my mom and my bro), so every day is a perfect day now. As for day job: https://www.linkedin.com/in/jean-louis-van-belle-85b74b7a/
[…]
As for the formalism that you are introducing, I would recommend close(r) study of:
(1) https://en.wikipedia.org/wiki/Geometrodynamics : my physics is a ‘mass without mass’ approach – but I do not believe charge can be further reduced (we need the concept to distinguish between matter and anti-matter, for example – geometry does not suffice to explain all degrees of freedom there);
(2) The failure of Wittgenstein’s formalism – as he admitted himself in what is commonly referred to as the ‘Wittgenstein II’ (nothing more than some of his comments in letters on his little booklet). I studied Wittgenstein as part of my philosophy studies and I am not too impressed. I feel we need a bit of ‘common’ language to add nuance and meaning to the mathematical symbols. Without the ambiguity in them, they do not mean all that much to me. Also see: https://en.wikipedia.org/wiki/Ordinary_language_philosophy
[…]
To add – I also believe step (3) of the geometrodynamics is not possible. We can do without the mass concept (and still it is useful to use in the higher-level physics), but not without charge or fields. Charge and field are not further reducible. The last slide of my ‘philosophy and physics’ presentation on YouTube shows the fundamental ‘categories’ I believe in (categories in an Aristotelian sense). These concepts can be both ‘relative’ or ‘absolute’ (not-relative, in the sense of (special/general) relativity theory). https://www.youtube.com/watch?v=sJxAh_uCNjs&t=16s
One more thing, despite my criticism on ‘Wittgenstein-like’ formalism, his first statement in his Tractatus should obviously be the point of departure of any ‘metaphysics’ or epistemology: 1.1 Die Welt ist die Gesamtheit der Tatsachen, nicht der Dinge. Perhaps it is the only thing we can seriously say about ‘the world’ or ‘reality’. It serves as a ‘good enough’ definition to me, in any case. 🙂
Deep electron orbitals and the essence of quantum physics
After a long break (more than six months), I have started to engage again in a few conversations. I also looked at the 29 papers on my ResearchGate page, and I realize some of them would need to be re-written or re-packaged so as to ensure a good flow. Also, some of the approaches were more productive than others (some did not lead anywhere at all, actually), and I would need to point those out. I have been thinking about how to approach this, and I think I am going to produce an annotated version of these papers, with comments and corrections as mark-ups. Re-writing or re-structuring all of them would require to much work.
The mark-up of those papers is probably going to be based on some ‘quick-fire’ remarks (a succession of thoughts triggered by one and the same question) which come out of the conversation below, so I thank these thinkers for having kept me in the loop of a discussion I had followed but not reacted to. It is an interesting one – on the question of ‘deep electron orbitals’ (read: the orbitals of negative charge inside of a nucleus exist and, if so, how one can model them. If one could solve that question, one would have a theoretical basis for what is referred to as low-energy nuclear reactions. That was known formerly as cold fusion, but that got a bit of a bad name because of a number of crooks spoiling the field, unfortunately.
PS: I leave the family names of my correspondents in the exchange below out so they cannot be bothered. One of them, Jerry, is a former American researcher at SLAC. Andrew – the key researcher on DEPs – is a Canadian astrophysicist, and the third one – Jean-Luc – is a rather prominent French scientist in LENR.]
From: Jean Louis Van Belle
Sent: 18 November 2021 22:51
Subject: Staying engaged (5)
Oh – and needless to say, Dirac’s basic equation can, of course, be expanded using the binomial expansion – just like the relativistic energy-momentum relation, and then one can ‘cut off’ the third-, fourth-, etc-order terms and keep the first and second-order terms only. Perhaps it is equations like that kept you puzzled (I should check your original emails). In any case, this way of going about energy equations for elementary particles is a bit the same as those used in perturbation equations in which – as Dirac complained – one randomly selects terms that seem to make sense and discard others because they do not seem to make sense. Of course, Dirac criticized perturbation theory much more severely than this – and rightly so. 😊 😊 JL
From: Jean Louis Van Belle
Sent: 18 November 2021 22:10
Subject: Staying engaged (4)
Also – I remember you had some questions on an energy equation – not sure which one – but so I found Dirac’s basic equation (based on which he derives the ‘Dirac’ wave equation) is essentially useless because it incorporates linear momentum only. As such, it repeats de Broglie’s mistake, and that is to interpret the ‘de Broglie’ wavelength as something linear. It is not: frequencies, wavelengths are orbital frequencies and orbital circumferences. So anything you would want to do with energy equations that are based on that, lead nowhere – in my not-so-humble opinion, of course. To illustrate the point, compare the relativistic energy-momentum relation and Dirac’s basic equation in his Nobel Prize lecture (I hope the subscripts/superscripts get through your email system so they display correctly):
m02c4 = E2 – p2c2 (see, for example, Feynman-I-16, formula 16-3)
Divide the above by c2 and re-arrange and you get Dirac’s equation: W2/c2 – pr2 – m2/c2 = 0 (see his 1933 Nobel Prize Lecture)
So that cannot lead anywhere. It’s why I totally discard Dirac’s wave equation (it has never yielded any practical explanation of a real-life phenomenon anyway, if I am not mistaken).
Cheers – JL
From: Jean Louis Van Belle
Sent: 18 November 2021 21:49
Subject: Staying engaged (3)
Just on ‘retarded sources’ and ‘retarded fields’ – I have actually tried to think of the ‘force mechanism’ inside of an electron or a proton (what keeps the pointlike charge in this geometric orbit around a center of mass?). I thought long and hard about some kind of model in which we have the charge radiate out a sub-Planck field, and that its ‘retarded effects’ might arrive ‘just in time’ to the other side of the orbital (or whatever other point on the orbital) so as to produce the desired ‘course correction’ might explain it. I discarded it completely: I am now just happy that we have ‘reduced’ the mystery to this ‘Planck-scale quantum-mechanical oscillation’ (in 2D or 3D orbitals) without the need for an ‘aether’, or quantized spacetime, or ‘virtual particles’ actually ‘holding the thing together’.
Also, a description in terms of four-vectors (scalar and vector potential) does not immediately call for ‘retarded time’ variables and all that, so that is another reason why I think one should somehow make the jump from E-B fields to scalar and vector potential, even if the math is hard to visualize. If we want to ‘visualize’ things, Feynman’s discussion of the ‘energy’ and ‘momentum’ flow in https://www.feynmanlectures.caltech.edu/II_27.html might make sense, because I think analyses in terms of Poynting vectors are relativistically current, aren’t they? It is just an intuitive idea…
Cheers – JL
From: Jean Louis Van Belle
Sent: 18 November 2021 21:28
Subject: Staying engaged (2)
But so – in the shorter run – say, the next three-six months, I want to sort out those papers on ResearchGate. The one on the de Broglie’s matter-wave (interpreting the de Broglie wavelength as the circumference of a loop rather than as a linear wavelength) is the one that gets most downloads, and rightly so. The rest is a bit of a mess – mixing all kinds of things I tried, some of which worked, but other things did not. So I want to ‘clean’ that up… 😊 JL
From: Jean Louis Van Belle
Sent: 18 November 2021 21:21
Subject: Staying engaged…
Please do include me in the exchanges, Andrew – even if I do not react, I do read them because I do need some temptation and distraction. As mentioned, I wanted to focus on building a credible n = p + e model (for free neutrons but probably more focused on a Schrodinger-like D = p + e + p Platzwechsel model, because the deuteron nucleus is stable). But so I will not do that the way I studied the zbw model of the electron and proton (I believe that is sound now) – so that’s with not putting in enough sleep. I want to do it slowly now. I find a lot of satisfaction in the fact that I think there is no need for complicated quantum field theories (fields are quantized, but in a rather obvious way: field oscillations – just like matter-particles – pack Planck’s quantum of (physical) action which – depending on whether you freeze time or positions as a variable, expresses itself as a discrete amount of energy or, alternatively, as a discrete amount of momentum), nor is there any need for this ‘ontologization’ of virtual field interactions (sub-Planck scale) – the quark-gluon nonsense.
Also, it makes sense to distinguish between an electromagnetic and a ‘strong’ or ‘nuclear’ force: the electron and proton have different form factors (2D versus 3D oscillations, but that is a bit of a non-relativistic shorthand for what might be the case) but, in addition, there is clearly a much stronger force at play within the proton – whose strength is the same kind of ‘scale’ as the force that gives the muon-electron its rather enormous mass. So that is my ‘belief’ and the ‘heuristic’ models I build (a bit of ‘numerology’ according to Dr Pohl’s rather off-hand remarks) support it sufficiently for me to make me feel at peace about all these ‘Big Questions’.
I am also happy I figured out these inconsistencies around 720-degree symmetries (just the result of a non-rigorous application of Occam’s Razor: if you use all possible ‘signs’ in the wavefunction, then the wavefunction may represent matter as well as anti-matter particles, and these 720-degree weirdness dissolves). Finally, the kind of ‘renewed’ S-matrix programme for analyzing unstable particles (adding a transient factor to wavefunctions) makes sense to me, but even the easiest set of equations look impossible to solve – so I may want to dig into the math of that if I feel like having endless amounts of time and energy (which I do not – but, after this cancer surgery, I know I will only die on some ‘moral’ or ‘mental’ battlefield twenty or thirty years from now – so I am optimistic).
So, in short, the DEP question does intrigue me – and you should keep me posted, but I will only look at it to see if it can help me on that deuteron model. 😊 That is the only ‘deep electron orbital’ I actually believe in. Sorry for the latter note.
Cheers – JL
From: Andrew
Sent: 16 November 2021 19:05
To: Jean-Luc; Jerry; Jean Louis
Subject: Re: retarded potential?
Dear Jean-Louis,
Congratulations on your new position. I understand your present limitations, despite your incredible ability to be productive. They must be even worse than those imposed by my young kids and my age. Do you wish for us to not include you in our exchanges on our topic? Even with no expectation of your contributing at this point, such emails might be an unwanted temptation and distraction.
Dear Jean-Luc,
Thank you for the Wiki-Links. They are useful. I agree that the 4-vector potential should be considered. Since I am now considering the nuclear potentials as well as the deep orbits, it makes sense to consider the nuclear vector potentials to have an origin in the relativistic Coulomb potentials. I am facing this in my attempts to calculate the deep orbits from contributions to the potential energies that have a vector component, which non-rel Coulomb potentials do not have.
For examples: do we include the losses in Vcb (e.g., from the binding energy BE) when we make the relativistic correction to the potential; or, how do we relativistically treat pseudo potentials such as that of centrifugal force? We know that for equilibrium, the average forces must cancel. However, I’m not sure that it is possible to write out a proper expression for “A” to fit such cases.
Best regards to all,
Andrew
_ _ _
On Fri, Nov 12, 2021 at 1:42 PM Jean-Luc wrote:
Dear all,
I totally agree with the sentence of Jean-Louis, which I put in bold in his message, about vector potential and scalar potential, combined into a 4-vector
potential A, for representing EM field in covariant formulation. So EM representation by 4-vector A has been very developed, as wished by JL,
in the framework of QED.
We can note the simplicity of Lorentz gauge written by using A.
https://en.wikipedia.org/wiki/Lorenz_gauge_condition
We can see the reality of vector potential
in the Aharonov-Bohm effect:
https://en.wikipedia.org/wiki/Aharonov-Bohm_effect.
In fact, we can see that vector potential contains more information than E,B fields.
Best regards
Jean-Luc
Le 12/11/2021 à 05:43, Jean Louis Van Belle a écrit :
Hi All – I’ve been absent in the discussion, and will remain absent for a while. I’ve been juggling a lot of work – my regular job at the Ministry of Interior (I got an internal promotion/transfer, and am working now on police and security sector reform) plus consultancies on upcoming projects in Nepal. In addition, I am still recovering from my surgery – I got a bad flue (not C19, fortunately) and it set back my auto-immune system, I feel. I have a bit of a holiday break now (combining the public holidays of 11 and 15 November in Belgium with some days off to bridge so I have a rather nice super-long weekend – three in one, so to speak).
As for this thread, I feel like it is not ‘phrasing’ the discussion in the right ‘language’. Thinking of E-fields and retarded potential is thinking in terms of 3D potential, separating out space and time variables without using the ‘power’ of four-vectors (four-vector potential, and four-vector space-time). It is important to remind ourselves that we are measuring fields in continuous space and time (but, again, this is relativistic space-time – so us visualizing a 3D potential at some point in space is what it is: we visualize something because our mind needs that – wants that). The fields are discrete, however: a field oscillation packs one unit of Planck – always – and Planck’s quantum of action combines energy and momentum: we should not think of energy and momentum as truly ‘separate’ (discrete) variables, just like we should not think of space and time as truly ‘separate’ (continuous) variables.
I do not quite know what I want to say here – or how I should further work it out. I am going to re-read my papers. I think I should further develop the last one (https://www.researchgate.net/publication/351097421_The_concepts_of_charge_elementary_ring_currents_potential_potential_energy_and_field_oscillations), in which I write that the vector potential is more real than the electric field and the scalar potential should be further developed, and probably it is the combined scalar and vector potential that are the ’real’ things. Not the electric and magnetic field. Hence, illustrations like below – in terms of discs and cones in space – do probably not go all that far in terms of ‘understanding’ what it is going on… It’s just an intuition…
Cheers – JL
From: Andrew
Sent: 23 September 2021 17:17
To: Jean-Luc; Jerry; Jean Louis
Subject: retarded potential?
Dear Jean-Luc,
Becasue of the claim that gluons are tubal, I have been looking at the disk-shaped E-field lines of the highly-relativistic electron and comparing it to the retarded potential, which, based on timing, would seem to give a cone rather than a disk (see figure). This makes a difference when we consider a deep-orbiting electron. It even impacts selection of the model for impact of an electron when considering diffraction and interference.
Even if the field appears to be spreading out as a cone, the direction of the field lines are that of a disk from the retarded source. However, how does it interact with the radial field of a stationary charge?
Do you have any thoughts on the matter.

Best regards,
Andrew
_ _ _
On Thu, Sep 23, 2021 at 5:05 AM Jean-Luc wrote:
Dear Andrew, Thank you for the references. Best regards, Jean-Luc
Le 18/09/2021 à 17:32, Andrew a écrit :
> This might have useful thoughts concerning the question of radiation
> decay to/from EDOs.
>
> Quantum Optics Electrons see the quantum nature of light
> Ian S. Osborne
> We know that light is both a wave and a particle, and this duality
> arises from the classical and quantum nature of electromagnetic
> excitations. Dahan et al. observed that all experiments to date in
> which light interacts with free electrons have been described with
> light considered as a wave (see the Perspective by Carbone). The
> authors present experimental evidence revealing the quantum nature of
> the interaction between photons and free electrons. They combine an
> ultrafast transmission electron microscope with a silicon-photonic
> nanostructure that confines and strengthens the interaction between
> the light and the electrons. The “quantum” statistics of the photons
> are imprints onto the propagating electrons and are seen directly in
> their energy spectrum.
> Science, abj7128, this issue p. 1324; see also abl6366, p. 1309
Feynman’s Lectures: A Survivor’s Guide
A few days ago, I mentioned I felt like writing a new book: a sort of guidebook for amateur physicists like me. I realized that is actually fairly easy to do. I have three very basic papers – one on particles (both light and matter), one on fields, and one on the quantum-mechanical toolbox (amplitude math and all of that). But then there is a lot of nitty-gritty to be written about the technical stuff, of course: self-interference, superconductors, the behavior of semiconductors (as used in transistors), lasers, and so many other things – and all of the math that comes with it. However, for that, I can refer you to Feynman’s three volumes of lectures, of course. In fact, I should: it’s all there. So… Well… That’s it, then. I am done with the QED sector. Here is my summary of it all (links to the papers on Phil Gibbs’ site):
Paper I: Quantum behavior (the abstract should enrage the dark forces)
Paper II: Probability amplitudes (quantum math)
Paper III: The concept of a field (why you should not bother about QFT)
Paper IV: Survivor’s guide to all of the rest (keep smiling)
Paper V: Uncertainty and the geometry of the wavefunction (the final!)
The last paper is interesting because it shows statistical indeterminism is the only real indeterminism. We can, therefore, use Bell’s Theorem to prove our theory is complete: there is no need for hidden variables, so why should we bother about trying to prove or disprove they can or cannot exist?
Jean Louis Van Belle, 21 October 2020
Note: As for the QCD sector, that is a mess. We might have to wait another hundred years or so to see the smoke clear up there. Or, who knows, perhaps some visiting alien(s) will come and give us a decent alternative for the quark hypothesis and quantum field theories. One of my friends thinks so. Perhaps I should trust him more. 🙂
As for Phil Gibbs, I should really thank him for being one of the smartest people on Earth – and for his site, of course. Brilliant forum. Does what Feynman wanted everyone to do: look at the facts, and think for yourself. 🙂
