This post is basically a continuation of my previous one but – as you can see from its title – it is much more aggressive in its language, as I was inspired by a very thoughtful comment on my previous post. Another advantage is that it avoids all of the math. đ It’s… Well… I admit it: it’s just a rant. đ [Those who wouldn’t appreciate the casual style of what follows, can download my paper on it – but that’s much longer and also has a lot more math in it – so it’s a much harder read than this ‘rant’.]

My previous post was actually triggered by an attempt to re-read Feynman’s Lectures on Quantum Mechanics, but in reverse order this time: from the last chapter to the first. [In case you doubt, I did follow the correct logical order when working my way through them for the first time because… Well… There is no other way to get through them otherwise. đ ] But then I was looking at Chapter 20. It’s a Lecture on quantum-mechanical operators – so that’s a topic which, in other textbooks, is usually tackled earlier on. When re-reading it, I realize why people quickly turn away from the topic of physics: it’s a lot of mathematical formulas which are supposed to reflect reality but, in practice, few – if any – of the mathematical concepts are actually being explained. Not in the first chapters of a textbook, not in its middle ones, and… Well… Nowhere, really. Why? Well… To be blunt: I think most physicists themselves don’t really understand what they’re talking about. In fact, as I have pointed out a couple of times already, Feynman himself admits so much:

âAtomic behaviorÂ appears peculiar and mysterious to everyoneâboth to the novice and to the experienced physicist.Â *Even the experts do not understand it the way they would like to*.â

SoâŠ WellâŠ If youâd be in need of a rather spectacular acknowledgement of the shortcomings of physics as a science, here you have it: if you don’t understand what physicists are trying to tell you, don’t worry about it, because they donât really understand it themselves. đ

Take the example of aÂ *physical state*, which is represented by aÂ *state vector*, which we can combine and re-combine using the properties of an abstractÂ *Hilbert space*.Â Frankly, I think the word is very misleading, because it actually doesn’t describe an *actual* physical state. Why? Well… If we look at this so-called physical state from another angle, then we need to *transform *it using a complicated set of transformation matrices. You’ll say: that’s what we need to do when going from one reference frame to another in classical mechanics as well, isn’t it?

Well… No. In classical mechanics, we’ll describe the physics using geometric vectors in three dimensions and, therefore, theÂ *baseÂ *of our reference frame doesn’t matter: because we’re usingÂ *realÂ *vectors (such as the electric of magnetic field vectors **E** and **B**), our orientation *vis-ĂĄ-vis* the object – theÂ *line of sight*, so to speak – doesn’t matter.

In contrast, in quantum mechanics, it does: SchrĂ¶dinger’s equation – and the wavefunction – has only two degrees of freedom, so to speak: its so-called real and its imaginary dimension. Worse, physicists refuse to give those two dimensions anyÂ *geometricÂ *interpretation. Why? I don’t know. As I show in my previous posts, it would be easy enough, right? We know both dimensions must be perpendicular to each other, so we just need to decide ifÂ *bothÂ *of them are going to be perpendicular to our line of sight. That’s it. We’ve only got two possibilities here which – in my humble view – explain why the matter-wave is different from an electromagnetic wave.

I actually can’t quite believe the craziness when it comes to interpreting the wavefunction: we get everything we’d want to know about our particle through these operators (momentum, energy, position, and whatever else you’d need to know), but mainstream physicists still tell us that the wavefunction is, somehow, not representing anything real. It might be because of that weird 720Â° symmetry – which, as far as I am concerned, confirms that those state vectors are not the right approach: you can’t represent a complex, asymmetrical shape by a ‘flat’ mathematical object!

* Huh?Â *Yes.Â TheÂ wavefunction is a ‘flat’ concept: it has two dimensions only, unlike theÂ

*realÂ*vectors physicists use to describe electromagnetic waves (which we may interpret as the wavefunction of the photon). Those have three dimensions, just like the mathematical space we project on events. Because the wavefunction is flat (think of a rotating disk), we have those cumbersome transformation matrices: each time we shift positionÂ

*vis-ĂĄ-vis*the object we’re looking at (

*das Ding an sich*, as Kant would call it), we need to change our description of it. And our description of it – the wavefunction – is all we have, so that’sÂ

*ourÂ*reality. However, because that reality changes as per our line of sight, physicists keep saying the wavefunction (orÂ

*das Ding an sichÂ*itself) is, somehow, not real.

Frankly,Â I do think physicists should take a basic philosophy course: you can’t describe what goes on in three-dimensional space if you’re going to use flat (two-dimensional) concepts, because the objects we’re trying to describe (e.g. non-symmetrical electron orbitals) aren’t flat. Let me quote one of Feynman’s famous lines on philosophers:Â âThese philosophersÂ areÂ alwaysÂ with us, struggling in the periphery toÂ tryÂ toÂ tell us something, but they never really understand the subtleties and depth of the problem.â (Feynman’s Lectures, Vol. I, Chapter 16)

Now, IÂ *loveÂ *Feynman’s Lectures but…Â Well… I’ve gone through them a couple of times now, so I do think I have an appreciation of the subtleties and depth of the problem now. And I tend to agree with some of the smarter philosophers: if you’re going to use ‘flat’ mathematical objects to describe three- or four-dimensional reality, then such approach will only get you where we are right now, and that’s a lot of mathematical* mumbo-jumbo*Â for the poor uninitiated. *Consistent* mumbo-jumbo, for sure, but mumbo-jumbo nevertheless. đ So, yes, I do think we need to re-invent quantum math. đ The description may look more complicated, but it would make more sense.

I mean… If physicists themselves have had continued discussions on the reality of the wavefunction for almost a hundred years now (SchrĂ¶dinger published his equation in 1926), then… Well… Then the physicists have a problem. Not the philosophers. đ As to how that new description might look like, see my papers on viXra.org. I firmly believe it can be done. This is just a hobby of mine, but… Well… That’s where my attention will go over the coming years. đ Perhaps quaternions are the answer but… Well… I don’t think so either – for reasons I’ll explain later. đ

**Post scriptum**: There are many nice videos on Dirac’s belt trick or, more generally, on 720Â° symmetries, but this links to one I particularly like. It clearly shows that the 720Â° symmetry requires, in effect, a special relation between the observer and the object that is being observed. It is, effectively, like there is a leather belt between them or, in this case, we have an arm between the glass and the person who is holding the glass. So it’s not like we are walking around the object (think of the glass of water) and making a full turn around it, so as to get back to where we were. No. *We are turning it around by 360Â°!Â *That’s a very different thing than just looking at it, walking around it, and then looking at it again. That explains the 720Â° symmetry: we need to turn it around twice to get it back to its original state. So… Well… The description is more about us and what we do with the object than about the object itself.Â That’s why I think the quantum-mechanical description is defective.