Modes in classical and in quantum physics

Pre-scriptum (dated 26 June 2020): These posts on elementary math and physics have not suffered much from the attack by the dark force—which is good because I still like them. While my views on the true nature of light, matter and the force or forces that act on them have evolved significantly as part of my explorations of a more realist (classical) explanation of quantum mechanics, I think most (if not all) of the analysis in this post remains valid and fun to read. In fact, I find the simplest stuff is often the best. 🙂

Original post:


Waves are peculiar: there is one single waveform, i.e. one motion only, but that motion can always be analyzed as the sum of the motions of all the different wave modes, combined with the appropriate amplitudes and phases. Saying the same thing using different words: we can always analyze the wave function as the sum of a (possibly infinite) number of components, i.e. a so-called Fourier series:

Fourier series

Fourier 2

The f(t) function can be any wave, but the simple examples in physics textbooks usually involve a string or, in two dimensions, some vibrating membrane, and I’ll stick to those examples too in this post. Feynman calls the Fourier components harmonic functions, or harmonics tout court, but the term ‘harmonic’ refers to so many different things in math that it may be better not to use it in this context. The component waves are sinusoidal functions, so sinusoidals might be a better term but it’s not in use, because a more general analysis will use complex exponentials, rather than sines and/or cosines. Complex exponentials (e.g. 10ix) are periodic functions too, so they are totally unlike real exponential functions (e.g. (e.g. 10x). Hence, Feynman also uses the term ‘exponentials’. At some point, he also writes that the pattern of motion (of a mode) varies ‘exponentially’ but, of course, he’s thinking of complex exponentials, and, therefore, we should substitute ‘exponentially’ for ‘sinusoidally’ when talking real-valued wave functions.

[…] I know. I am already getting into the weeds here. As I am a bit off-track anyway now, let me make another remark here. You may think that we have two types of sinusoidals, or two types of functions, in that Fourier decomposition: sines and cosines. You should not think of it that way: the sine and cosine function are essentially the same. I know your old math teacher in high school never told you that, but it’s true. They both come with the same circle (yes, I know that’s ridiculous statement but I don’t know how to phrase it otherwise): the difference between a sine and a cosines is just a phase shift: cos(ωt) = sin(ωt + π/2) and, conversely, sin(ωt) = cos(ωt − π/2). If the starting phases of all of the component waves would be the same, we’d have a Fourier decomposition involving cosines only, or sines only—whatever you prefer. Indeed, because they’re the same function except for that phase shift (π/2), we can always go from one to the other by shifting our origin of space (x) and/or time (t). However, we cannot assume that all of the component waves have the same starting phase and, therefore, we should write each component as cos(n·ωt + Φn), or a sine with a similar argument. Now, you’ll remember – because your math teacher in high school told you that at least 🙂 – that there’s a formula for the cosine (and sine) of the sum of two angles: we can write cos(n·ωt + Φn) as cos(n·ωt + Φn) = [cos(Φn)·cos(n·ωt) – sin(Φn)·sin(n·ωt)]. Substituting cos(Φn) and – sin(Φn) for an and bn respectively gives us the an·cos(n·ωt) + bn·sin(n·ωt) expressions above. In addition, the component waves may not only differ in phase, but also in amplitude, and, hence, the an and bn coefficients do more than only capturing the phase differences. But let me get back on the track. 🙂

Those sinusoidals have a weird existence: they are not there, physically—or so it seems. Indeed, there is one waveform only, i.e. one motion only—and, if it’s any real wave, it’s most likely to be non-sinusoidal. At the same time, I noted, in my previous post, that, if you pluck a string or play a chord on your guitar, some string you did not pluck may still pick up one or more of its harmonics (i.e. one or more of its overtones) and, hence, start to vibrate too! It’s the resonance phenomenon. If you have a grand piano, it’s even more obvious: if you’d press the C4 key on a piano, a small hammer will strike the C4 string and it will vibrate—but the C5 string (one octave higher) will also vibrate, although nothing touched it—except for the air transmitting the sound wave (including the harmonics causing the resonance) from the C4 string, of course! So the component waves are there and, at the same time, they’re not. Whatever they are, they are more than mathematical forms: the so-called superposition principle (on which the Fourier analysis is based) is grounded in reality: it’s because we can add forces. I know that sounds extremely obvious – or ridiculous, you might say 🙂 – but it is actually not so obvious. […] I am tempted to write something about conservative forces here but… Well… I need to move on.

Let me show that diagram of the first seven harmonics of an ideal string once again. All of them, and the higher ones too, would be in our wave function. Hence, assuming there’s no phase difference between the harmonics, we’d write:

f(t) = sin(ωt) + sin(2ωt) + sin(3ωt) + … + sin(nωt) + …


The frequencies of the various modes of our ideal string are all simple multiples of the fundamental frequency ω, as evidenced from the argument in our sine functions (ω, 2ω, 3ω, etcetera). Conversely, the respective wavelengths are λ, λ/2, λ/3, etcetera. [Remember: the speed of the wave is fixed, and frequency and wavelength are inversely proportional: = λ·f = λ/T = λ·(ω/2π).] So, yes, these frequencies and wavelengths can all be related to each other in terms of equally simple harmonic ratios: 1:2, 2:3, 3:5, 4:5 etcetera. I explained in my previous posts why that does not imply that the musical notes themselves are related in such way: the musical scale is logarithmic. So I won’t repeat myself. All of the above is just an introduction to the more serious stuff, which I’ll talk about now.

Modes in two dimensions

An analysis of waves in two dimensions is often done assuming some drum membrane. The Great Teacher played drums, as you can see from his picture in his Lectures, and there are also videos of him performing on YouTube. So that’s why the drum is used almost all textbooks now. 🙂

The illustration of one of the normal modes of a circular membrane comes from the Wikipedia article on modes. There are many other normal modes – some of them with a simpler shape, but some of them more complicated too – but this is a nice one as it also illustrates the concept of a nodal line, which is closely related to the concept of a mode. Huh? Yes. The modes of a one-dimensional string have nodes, i.e. points where the displacement is always zero. Indeed, as you can see from the illustration above (not below), the first overtone has one node, the second two, etcetera. So the equivalent of a node in two dimensions is a nodal line: for the mode shown below, we have one bisecting the disc and then another one—a circle about halfway between the edge and center. The third nodal line is the edge itself, obviously. [The author of the Wikipedia article nodes that the animation isn’t perfect, because the nodal line and the nodal circle halfway the edge and the center both move a little bit. In any case, it’s pretty good, I think. I should also learn how to make animations like that. :-)]

Mode_Shape_of_a_Round_Plate_with_Node_Lines Drum_vibration_mode12

What’s a mode?

How do we find these modes? And how are they defined really? To explain that, I have to briefly return to the one-dimensional example. The key to solving the problem (i.e. finding the modes, and defining their characteristics) is the following fact: when a wave reaches the clamped end of a string, it will be reflected with a change in sign, as illustrated below: we’ve got that F(x+ct) wave coming in, and then it goes back indeed, but with the sign reversed.


It’s a complicated illustration because it also shows some hypothetical wave coming from the other side, where there is no string to vibrate. That hypothetical wave is the same wave, but travelling in the other direction and with the sign reversed (–F). So what’s that all about? Well… I never gave any general solution for a waveform traveling up and down a string: I just said the waveform was traveling up and down the string (now that is obvious: just look at that diagram with the seven first harmonics once again, and think about how that oscillation goes up and down with time), but so I did not really give any general solution for them (the sine and cosine functions are specific solutions). So what is the general solution?

Let’s first assume the string is not held anywhere, so that we have an infinite string along which waves can travel in either direction. In fact, the most general functional form to capture the fact that a waveform can travel in any direction is to write the displacement y as the sum of two functions: one wave traveling one way (which we’ll denote by F), and the other wave (which we’ll denote by G) traveling the other way. From the illustration above, it’s obvious that the F wave is traveling towards the negative x-direction and, hence, its argument will be x + ct. Conversely, the G wave travels in the positive x-direction, so its argument is x – ct. So we write:

y = F(x + ct) + G(x – ct)

[I’ve explained this thing about directions and why the argument in a wavefunction (x ± ct) is what it is before. You should look it up in case you don’t understand. As for the in this equation, that’s the wave velocity once more, which is constant and which depends, as always, on the medium, so that’s the material and the diameter and the tension and whatever of the string.]

So… We know that the string is actually not infinite, but that it’s fixed to some ‘infinitely solid wall’ (as Feynman puts it). Hence, y is equal to zero there: y = 0. Now let’s choose the origin of our x-axis at the fixed end so as to simplify the analysis. Hence, where y is zero, x is also zero. Now, at x = 0, our general solution above for the infinite string becomes  y = F(ct) + G(−ct) = 0, for all values of t. Of course, that means G(−ct) must be equal to –F(ct). Now, that equality is there for all values of t. So it’s there for all values of ct and −ct. In short, that equality is valid for whatever value of the argument of G and –F. As Feynman puts it: “of anything must be –of minus that same thing.” Now, the ‘anything’ in G is its argument: x – ct, so ‘minus that same thing’ is –(x – ct) = −x + ct. Therefore, our equation becomes:

y = F(x + ct) − F(−x + ct)

So that’s what’s depicted in the diagram above: the F(x + ct) wave ‘vanishes’ behind the wall as the − F(−x + ct) wave comes out of it. Conversely, the − F(−x + ct) is hypothetical indeed until it reaches the origin, after which it becomes the real wave. Their sum is only relevant near the origin x = 0, and on the positive side only (on the negative side of the x-axis, the F and G functions are both hypothetical). [I know, it’s not easy to follow, but textbooks are really short on this—which is why I am writing my blog: I want to help you ‘get’ it.]

Now, the results above are valid for any wave, periodic or not. Let’s now confine the analysis to periodic waves only. In fact, we’ll limit the analysis to sinusoidal wavefunctions only. So that should be easy. Yes. Too easy. I agree. 🙂

So let’s make things difficult again by introducing the complex exponential notation, so that’s Euler’s formula: eiθ = cosθ + isinθ, with the imaginary unit, and isinθ the imaginary component of our wave. So the only thing that is real, is cosθ.

What the heck? Just bear with me. It’s good to make the analysis somewhat more general, especially because we’ll be talking about the relevance of all of this to quantum physics, and in quantum physics the waves are complex-valued indeed! So let’s get on with it. To use Euler’s formula, we need to substitute x + ct for the phase of the wave, so that involves the angular frequency and the wavenumber. Let me just write it down:

F(x + ct) = eiω(t+x/c) and F(−x + ct) = eiω(t−x/c)

Huh? Yeah. Sorry. I’ll resist the temptation to go off-track here, because I really shouldn’t be copying what I wrote in other posts. Most of what I write above is really those simple relations: c = λ·f = ω/k, with k, i.e. the wavenumber, being defined as k = 2π/λ. For details, go to one of my others posts indeed, in which I explain how that works in very much detail: just click on the link here, and scroll down to the section on the phase of a wave, in which I explain why the phase of wave is equal to θ = ωt–kx = ω(t–x/c). And, yes, I know: the thing with the wave directions and the signs is quite tricky. Just remember: for a wave traveling in the positive x-direction, the signs in front of x and t are each other’s opposite but, if the wave’s traveling in the negative y-direction, they are the same. As mentioned, all the rest is usually a matter of shifting the phase, which amounts to shifting the origin of either the x- or the t-axis. I need to move on. Using the exponential notation for our sinusoidal wave, y = F(x + ct) − F(−x + ct) becomes:

y = eiω(t+x/c) − eiω(t−x/c)

I can hear you sigh again: Now what’s that for? What can we do with this? Just continue to bear with me for a while longer. Let’s factor the eiωt term out. [Why? Patience, please!] So we write:

y = eiωt [eiωx/c) − eiωx/c)]

Now, you can just use Euler’s formula again to double-check that eiθ − e−θ = 2isinθ. [To get that result, you should remember that cos(−θ) = cosθ, but sin(−θ) = −sin(θ).] So we get:

y = eiωt [eiωx/c) − eiωx/c)] = 2ieiωtsin(ωx/c)

Now, we’re only interested in the real component of this amplitude of course – but that’s only we’re in the classical world here, not in the real world, which is quantum-mechanical and, hence, involves the imaginary stuff also 🙂 – so we should write this out using Euler’s formula again to convert the exponential to sinusoidals again. Hence, remembering that i2 = −1, we get:

y = 2ieiωtsin(ωx/c) = 2icos(ωt)·sin(ωx/c) – 2sin(ωt)·sin(ωx/c)


OK. You need a break. So let me pause here for a while. What the hell are we doing? Is this legit? I mean… We’re talking some real wave, here, don’t we? We do. So is this conversion from/to real amplitudes to/from complex amplitudes legit? It is. And, in this case (i.e. in classical physics), it’s true that we’re interested in the real component of y only. But then it’s nice the analysis is valid for complex amplitudes as well, because we’ll be talking complex amplitudes in quantum physics.

[…] OK. I acknowledge it all looks very tricky so let’s see what we’d get using our old-fashioned sine and/or cosine function. So let’s write F(x + ct) as cos(ωt+ωx/c) and F(−x + ct) as cos(ωt−ωx/c). So we write y = cos(ωt+ωx/c) − cos(ωt−ωx/c). Now work on this using the cos(α+β) = cosα·cosβ − sinα·sinβ formula and the cos(−α) = cosα and sin(−α) = −sinα identities. You (should) get: y = −2sin(ωt)·sin(ωx/c). So that’s the real component in our y function above indeed. So, yes, we do get the same results when doing this funny business using complex exponentials as we’d get when sticking to real stuff only! Fortunately! 🙂

[Why did I get off-track again? Well… It’s true these conversions from real to complex amplitudes should not be done carelessly. It is tricky and non-intuitive, to say the least. The weird thing about it is that, if we multiply two imaginary components, we get a real component, because i2 is a real number: it’s −1! So it’s fascinating indeed: we add an imaginary component to our real-valued function, do all kinds of manipulations with – including stuff that involves the use of the i2 = −1 – and, when done, we just take out the real component and it’s alright: we know that the result is OK because of the ‘magic’ of complex numbers! In any case, I need to move on so I can’t dwell on this. I also explained much of the ‘magic’ in other posts already, so I shouldn’t repeat myself. If you’re interested, click on this link, for instance.]

Let’s go back to our y = – 2sin(ωt)·sin(ωx/c) function. So that’s the oscillation. Just look at the equation and think about what it tells us. Suppose we fix x, so we’re looking at one point on the string only and only let t vary: then sin(ωx/c) is some constant and it’s our sin(ωt) factor that goes up and down. So our oscillation has frequency ω, at every point x, so that’s everywhere!

Of course, this result shouldn’t surprise us, should it? That’s what we put in when we wrote F as F(x + ct) = eiω(t+x/c) or as cos(ωt+ωx/c), isn’t it? Well… Yes and no. Yes, because you’re right: we put in that angular frequency. But then, no, because we’re talking a composite wave here: a wave traveling up and down, with the components traveling in opposite directions. Indeed, we’ve also got that G(x) = −F(–x) function here. So, no, it’s not quite the same.

Let’s fix t now, and take a snapshot of the whole wave, so now we look at x as the variable and sin(ωt) is some constant. What we see is a sine wave, and sin(ωt) is its maximum amplitude. Again, you’ll say: of course! Well… Yes. The thing is: the point where the amplitude of our oscillation is equal to zero, is always the same, regardless of t. So we have fixed nodes indeed. Where are they? The nodes are, obviously, the points where sin(ωx/c) = 0, so that’s when ωx/c is equal to 0, obviously, or – more importantly – whenever ωx/c is equal to π, 2π, 3π, 4π, etcetera. More, generally, we can say whenever ωx/c = n·π with n = 0, 1, 2,… etc. Now, that’s the same as writing x = n·π·c/ω = n·π/k = n·π·λ/2π = n·λ/2.

Now let’s remind ourselves of what λ really is: for the fundamental frequency it’s twice the length of the string, so λ = 2·L. For the next mode (i.e. the second harmonic), it’s the length itself: λ = L. For the third, it’s λ = (2/3)·L, etcetera. So, in general, it’s λ = (2/m)·L with m = 1, 2, etcetera. [We may or may not want to include a zero mode by allowing m to equal zero as well, so then there’s no oscillation and y = 0 everywhere. 🙂 But that’s a minor point.] In short, our grand result is:

x = n·λ/2 = n·(2/m)·L/2 = (n/m)·L

Of course, we have to exclude the x points lying outside of our string by imposing that n/m ≤ 1, i.e. the condition that n ≤ m. So for m = 1, n is 0 or 1, so the nodes are, effectively, both ends of the string. For m = 2, n can be 0, 1 and 2, so the nodes are the ends of the string and it’s middle point L/2. And so on and so on.

I know that, by now, you’ve given up. So no one is reading anymore and so I am basically talking to myself now. What’s the point? Well… I wanted to get here in order to define the concept of a mode: a mode is a pattern of motion, which has the property that, at any point, the object moves perfectly sinusoidally, and that all points move at the same frequency (though some will move more than others). Modes also have nodes, i.e. points that don’t move at all, and above I showed how we can find the nodes of the modes of a one-dimensional string.

Also note how remarkable that result actually is: we didn’t specify anything about that string, so we don’t care about its material or diameter or tension or whatever. Still, we know its fundamental (or normal modes), and we know their nodes: they’re a function of the length of the string, and the number of the mode only: x = (n/m)·L. While an oscillating string may seem to be the most simple thing on earth, it isn’t: think of all the forces between the molecules, for instance, as that string is vibrating. Still, we’ve got this remarkably simple formula. Don’t you find that amazing?

[…] OK… If you’re still reading, I know you want me to move on, so I’ll just do that.

Back to two dimensions

The modes are all that matters: when linear forces (i.e. linear systems) are involved, any motion can be analyzed as the sum of the motions of all the different modes, combined with appropriate amplitudes and phases. Let me reproduce the Fourier series once more (the more you see, the better you’ll understand it—I should hope!): Fourier seriesOf course, we should generalize this also include x as a variable which, again, is easier if we’d use complex exponentials instead of the sinusoidal components. The nice illustration on Fourier analysis from Wikipedia shows how it works, in essence, that is. The red function below consists of six of those modes.


OK. Enough of this. Let’s go to the two-dimensional case now. To simplify the analysis, Feynman invented a rectangular drum. A rectangular drum is probably more difficult to play, but it’s easier to analyze—as compared to a circular drum, that is! 🙂


In two dimensions, our sinusoidal one-dimensional ei(ωt−kx) waveform becomes ei(ωt−kxx−kyy). So we have a wavenumber for the x and y directions, and the sign in front is determined by the direction of the wave, so we need to check whether it moves in the positive or negative direction of the x- and y-axis respectively. Now, we can rewrite ei(ωt+kxx+kyy) as eiωt·ei(ωt+kxx+kyy), of course, which is what you see in the diagram above, except that the wave is moving in the negative y direction and, hence, we’ve got + sign in front of our kyy term. All the rest is rather well explained in Feynman, so I’ll refer you to the textbook here.

We basically need to ensure that we have a nodal line at x = 0 and at x = a, and then we do the same for y = 0 and y = a. Then we apply exactly the same logic as for the one-dimensional string: the wave needs to be coherently reflected. The analysis is somewhat more complicated because it involves some angle of incidence now, i.e. the θ in the diagram above, so that’s another page in Feynman’s textbook. And then we have the same gymnastics for finding wavelengths in terms of the dimensions and b, as well as in terms of n and m, where n is the number of the mode involved when fixing the nodal lines at x = 0 and x = a, and m is the number of the mode involved when fixing the nodal lines at = 0 and y = b. Sounds difficult? Well… Yes. But I won’t copy Feynman here. Just go and check for yourself. 

The grand result is that we do get some formula for a wavelength λ of what satisfies the definition of a mode: a perfectly sinusoidal motion, that has all points on the drum move at the same frequency, though some move more than others. Also, as evidenced from my illustration for the circular disk: we’ve got nodal lines, and then I mean other nodal lines, different from the edges! I’ll just give you that formula here (again, for the detail, go and check Feynman yourself):


Feynman also works out an example for a = 2b. I’ll just copy the results hereunder, which is a formula for the (angular) frequencies ω, and a table of the mode shapes in a qualitative way (I’ll leave it to you to google animations that match the illustration).



Again, we should note the amazing simplicity of the result: we don’t care about the type of membrane or whatever other material the drum is made of. It’s proportions are all that matters.

Finally, you should also note the last two columns in the table above: these just show to illustrate that, unlike our modes in the one-dimensional case, the natural frequencies here are not multiples of the fundamental frequency. As Feynman notes, we should not be led astray by the example of the one-dimensional ideal string. It’s again a departure from the Pythagorean idea, that all in Nature respects harmonic ratios. It’s just not true. Let me quote Feynman, as I have no better summary: “The idea that the natural frequencies are harmonically related is not generally true. It is not true for a system with more than one dimension, nor is it true for one-dimensional systems which are more complicated than a string with uniform density and tension.

So… That says it all, I’d guess. Maybe I should just quote his example of a one-dimensional system that does not obey Pythagoras’ prescription: a hanging chain which, because of the weight of the chain, has higher tension at the top than at the bottom. If such chain is set in oscillation, there are various modes and frequencies, but the frequencies will not be simply multiples of each other, nor of any other number. It is also interesting to note that the mode shapes will also not be sinusoidal. However, here we’re getting into non-linear dynamics, and so I’ll you read about that elsewhere too: once again, Feynman’s analysis of non-linear systems is very accessible and an interesting read. Hence, I warmly recommend it.

Modes in three dimensions and in quantum mechanics.

Well… Unlike what you might expect, I won’t bury you under formulas this time. Let me refer you, instead, to Wikipedia’s article on the so-called Leidenfrost effect. Just do it. Don’t bother too much about the text, scroll down a bit, and play the video that comes with it. I saw it, sort of by accident, and, at first, I thought it was something very high-tech. But no: it’s just a drop of water skittering around in a hot pan. It takes on all kinds of weird forms and oscillates in the weirdest of ways, but all is nothing but an excitation of the various normal modes of it, with various amplitudes and phases, of course, as a Fourier analysis of the phenomenon dictates.

There’s plenty of other stuff around to satisfy your curiosity, all quite understandable and fun—because you now understand the basics of it for the one- and two-dimensional case.

So… Well… I’ve kept this section extremely short, because now I want to say a few words about quantum-mechanical systems. Well… In fact, I’ll simply quote Feynman on it, because he writes about in a style that’s unsurpassed. He also nicely sums up the previous conversation. Here we go:

The ideas discussed above are all aspects of what is probably the most general and wonderful principle of mathematical physics. If we have a linear system whose character is independent of the time, then the motion does not have to have any particular simplicity, and in fact may be exceedingly complex, but there are very special motions, usually a series of special motions, in which the whole pattern of motion varies exponentially with the time. For the vibrating systems that we are talking about now, the exponential is imaginary, and instead of saying “exponentially” we might prefer to say “sinusoidally” with time. However, one can be more general and say that the motions will vary exponentially with the time in very special modes, with very special shapes. The most general motion of the system can always be represented as a superposition of motions involving each of the different exponentials.

This is worth stating again for the case of sinusoidal motion: a linear system need not be moving in a purely sinusoidal motion, i.e., at a definite single frequency, but no matter how it does move, this motion can be represented as a superposition of pure sinusoidal motions. The frequency of each of these motions is a characteristic of the system, and the pattern or waveform of each motion is also a characteristic of the system. The general motion in any such system can be characterized by giving the strength and the phase of each of these modes, and adding them all together. Another way of saying this is that any linear vibrating system is equivalent to a set of independent harmonic oscillators, with the natural frequencies corresponding to the modes.

In quantum mechanics the vibrating object, or the thing that varies in space, is the amplitude of a probability function that gives the probability of finding an electron, or system of electrons, in a given configuration. This amplitude function can vary in space and time, and satisfies, in fact, a linear equation. But in quantum mechanics there is a transformation, in that what we call frequency of the probability amplitude is equal, in the classical idea, to energy. Therefore we can translate the principle stated above to this case by taking the word frequency and replacing it with energy. It becomes something like this: a quantum-mechanical system, for example an atom, need not have a definite energy, just as a simple mechanical system does not have to have a definite frequency; but no matter how the system behaves, its behavior can always be represented as a superposition of states of definite energy. The energy of each state is a characteristic of the atom, and so is the pattern of amplitude which determines the probability of finding particles in different places. The general motion can be described by giving the amplitude of each of these different energy states. This is the origin of energy levels in quantum mechanics. Since quantum mechanics is represented by waves, in the circumstance in which the electron does not have enough energy to ultimately escape from the proton, they are confined waves. Like the confined waves of a string, there are definite frequencies for the solution of the wave equation for quantum mechanics. The quantum-mechanical interpretation is that these are definite energies. Therefore a quantum-mechanical system, because it is represented by waves, can have definite states of fixed energy; examples are the energy levels of various atoms.

Isn’t that great? What a summary! It also shows a deeper understanding of classical physics makes it sooooo much better to read something about quantum mechanics. In any case, as for the examples, I should add – because that’s what you’ll often find when you google for quantum-mechanical modes – the vibrational modes of molecules. There’s tons of interesting analysis out there, and so I’ll let you now have fun with it yourself! 🙂

Some content on this page was disabled on June 16, 2020 as a result of a DMCA takedown notice from The California Institute of Technology. You can learn more about the DMCA here:
Some content on this page was disabled on June 16, 2020 as a result of a DMCA takedown notice from The California Institute of Technology. You can learn more about the DMCA here:
Some content on this page was disabled on June 16, 2020 as a result of a DMCA takedown notice from The California Institute of Technology. You can learn more about the DMCA here:
Some content on this page was disabled on June 16, 2020 as a result of a DMCA takedown notice from The California Institute of Technology. You can learn more about the DMCA here:

Differential equations revisited: the math behind oscillators

Pre-scriptum (dated 26 June 2020): This post – part of a series of rather simple posts on elementary math and physics – does not seem to have been targeted in the the attack by the dark force—which is good because I still like it. While my views on the true nature of light, matter and the force or forces that act on them have evolved significantly as part of my explorations of a more realist (classical) explanation of quantum mechanics, I think most (if not all) of the analysis in this post remains valid and fun to read. In fact, I would dare to say the whole Universe consists of oscillators!

Original post:

When wrapping up my previous post, I said that I might be tempted to write something about how to solve these differential equations. The math behind them is pretty essential indeed. So let’s revisit the oscillator from a formal-mathematical point of view.

Modeling the problem

The simplest equation we used was the one for a hypothetical ‘ideal’ oscillator without friction and without any external driving force. The equation for a mechanical oscillator (i.e. a mass on a spring) is md2x/dt2 = –kx. The k in this equation is a factor of proportionality: the force pulling back is assumed to be proportional to the amount of stretch, and the minus sign is there because the force is pulling back indeed. As for the equation itself, it’s just Newton’s Law: the mass times the acceleration equals the force: ma = F.

You’ll remember we preferred to write this as d2x/dt2 = –(k/m)x = –ω02x with ω0= k/m. You’ll also remember that ωis an angular frequency, which we referred to as the natural frequency of the oscillator (because it determines the natural motion of the spring indeed). We also gave the general solution to the differential equation: x(t) = x0cos(ω0t + Δ). That solution basically states that, if we just let go of that spring, it will oscillate with frequency ω0 and some (maximum) amplitude x0, the value of which depends on the initial conditions. As for the Δ term, that’s just a phase shift depending on where x is when we start counting time: if x would happen to pass through the equilibrium point at time t = 0, then Δ would be π/2. So Δ allows us to shift the beginning of time, so to speak.

In my previous posts, I just presented that general equation as a fait accompli, noting that a cosine (or sine) function does indeed have that ‘nice’ property of come back to itself with a minus sign in front after taking the derivative two times: d2[cos(ω0t)]/dt2 = –ω02cos(ω0t). We could also write x(t) as a sine function because the sine and cosine function are basically the same except for a phase shift: x0cos(ω0t + Δ) = x0sin(ω0t + Δ + π/2).

Now, the point to note is that the sine or cosine function actually has two properties that are ‘nice’ (read ‘essential’ in the context of this discussion):

  1. Sinusoidal functions are periodic functions and so that’s why they represent an oscillation–because that’s something periodic too!
  2. Sinusoidal functions come back to themselves when we derive them two times and so that’s why it effectively solves our second-order differential equation.

However, in my previous post, I also mentioned in passing that sinusoidal functions share that second property with exponential functions: d2et/dt= d[det/dt]/dt = det/dt = et. So, if it we would not have had that minus sign in our differential equation, our solution would have been some exponential function, instead of a sine or a cosine function. So what’s going on here?

Solving differential equations using exponentials

Let’s scrap that minus sign and assume our problem would indeed be to solve the d2x/dt2 = ω02x equation. So we know we should use some exponential function, but we have that coefficient ω02. Well… That’s actually easy to deal with: we know that, when deriving an exponential function, we should bring the exponent down as a coefficient: d[eω0t]/dt = ω0eω0t. If we do it two times, we get d2[eω0t]/dt2 = ω02eω0t, so we can immediately see that eω0is a solution indeed.

But it’s not the only one: e–ω0t is a solution too: d2[e–ω0t]/dt2 = (–ω0)(–ω0)e–ω0t = ω02e–ω0t. So e–ω0solves the equation too. It is easy to see why: ω02 has two square roots–one positive, and one negative.

But we have more: in fact, every linear combination c1eω0+ c2e–ω0is also a solution to that second-order differential equation. Just check it by writing it all out: you’ll find that d2[c1eω0+ c2e–ω0t]/dt2 = ω02[c1eω0+c2e–ω0t] and so, yes, we have a whole family of functions here, that are all solutions to our differential equation.

Now, you may or may not remember that we had the same thing with first-order differential equations: we would find a whole family of functions, but only one would be the actual solution or the ‘real‘ solution I should say. So what’s the real solution here?

Well… That depends on the initial conditions: we need to know the value of x at time t= 0 (or some other point t = t1). And that’s not enough: we have two coefficients (cand c2), and, therefore, we need one more initial condition (it takes two equations to solve for two variables). That could be another value for x at some other point in time (e.g. t2) but, when solving problems like this, you’ll usually get the other ‘initial condition’ expressed in terms of the first derivative, so that’s in terms of dx/dt = v. For example, it is not illogical to assume that the initial velocity v0 would be zero. Indeed, we can imagine we pull or push the spring and then let it go. In fact, that’s what we’ve been assuming here all along in our example! Assuming that v0 = 0 is equivalent to writing that

d[c1eω0+ c2e–ω0t]/dt = 0 for t = 0

⇒ ω0c1 – ω0c2 = 0 (e= 1) ⇔  c1 = c2

Now we need the other initial condition. Let’s assume the initial value of x is equal to x0 = 2 (it’s just an example: we could take any value, including negative values). Then we get:

c1eω0+ c2e–ω0t = 2 for t = 0 ⇔ c1 + c= 2 (again, note that e= 1)

Combining the two gives us the grand result that c1 = c= 1 and, hence, the ‘real’ or actual solution is x = eω0e–ω0t. The graph below plots that function for ω= 1 and ω= 0.5 respectively. We could take other values for ω0 but, whatever the value, we’ll always get an exponential function like the ones below. It basically graphs what we expect to happen: the mass just accelerates away from its equilibrium point. Indeed, the differential equation is just a description of an accelerating object. Indeed, the e–ω0t term quickly goes to zero, and then it’s the eω0term that rockets that object sky-high – literally. [Note that the acceleration is actually not constant: the force is equal to kx and, hence, the force (and, therefore, the acceleration) actually increases as the mass goes further and further away from its equilibrium point. Also note that if the initial position would have been minus 2, i.e. x= –2, then the object would accelerate away in the other direction, i.e. downwards. Just check it to make sure you understand the equations.]

graph 2 graph

The point to note is our general solution. More formally, and more generally, we get it as follows:

  • If we have a linear second-order differential equation ax” + bx’ + cx = 0 (because of the zero on the right-hand side, we call such equation homogeneous, so it’s quite a mouthful: a linear and homogeneous DE of the second order), then we can find an exponential function ert that will be a solution for it.
  • If such function is a solution, then plugging in it yields ar2ert + brert + cert = 0 or (ar2 + br + c)ert = 0.
  • Now, we can read that as a condition, and the condition amounts to ar2 + br + c = 0. So that’s a quadratic equation we need to solve for r to find two specific solutions r1 and r2, which, in turn, will then yield our general solution:

 x(t) = c1er1+ c2er2t

Note that the general solution is based on the principle of superposition: any linear combination of two specific solutions will be a solution as well. I am mentioning this here because we’ll use that principle more than once.

Complex roots

The steps as described above implicitly assume that the quadratic equation above (i.e. ar2ert + brert + cert = 0), which is better known as the characteristic equation, does yield two real and distinct roots r1 and r2. In fact, it amounts to assuming that that exponential ert is a real-valued exponential function. We know how to find these real roots from our high school math classes: r = (–b ± [b– 4ac]1/2)/2a. However, what happens if the discrimant b– 4ac is negative?

If the disciminant is negative, we will still have two roots, but they will be complex roots. In fact, we can write these two complex roots as r = α ± βi, with i the imaginary unit. Hence, the two complex roots are each other’s complex conjugate and our er1and er2t can be written as:

er1= e(α+βi)t and er2e(α–βi)t

Also, the general solution based on these two particular solutions will be c1e(α+βi)t + c2e(α–βi)t.

[You may wonder why complex roots have to be complex conjugates from each other. Indeed, that’s not so obvious from the raw r = (–b ± [b– 4ac]1/2)/2a formula. But you can re-write it as r = –b/2a ± [b– 4ac]1/2)/2a and, if b– 4ac is negative, as r = –b/2a ± [(−b2+4ac)1/2/2a]. So that gives you the α and β and shows that the two roots are, in effect, each other’s complex conjugate.]

We should briefly pause here to think about what we are doing here really: if we allow r to be complex, then what we’re doing really is allow a complex-valued function (to be precise: we’re talking the complex exponential functions e(λ±μi)t, or any linear combination of the two) of a real variable (the time variable t) to be part of our ‘solution set’ as well.

Now, we’ve analyzed complex exponential functions before–long time ago: you can check out some of my posts last year (November 2013). In fact, we analyzed even more complex – in fact, I should say more complicated rather than more complex here: complex numbers don’t need to be complicated! 🙂 – because we were talking complex-valued functions of complex variables there! That’s not the case here: the argument t (i.e. the input into our function) is real, not complex, but the output – or the function itself – is complex-valued. Now, any complex exponential e(α+βi)t can be written as eαteiβt, and so that’s easy enough to understand:

1. The first factor (i.e. eαt) is just a real-valued exponential function and so we should be familiar with that. Depending on the value of α (negative or positive: see the graph below), it’s a factor that will create an envelope for our function. Indeed, when α is negative, the damping will cause the oscillation to stop after a while. When α is positive, we’ll have a solution resembling the second graph below: we have an amplitude that’s getting bigger and bigger, despite the friction factor (that’s obviously possible only because we keep reinforcing the movement, so we’re not switching off the force in that case). When α is equal to zero, then eαt is equal to unity and so the amplitude will not change as the spring goes up and down over time: we have no friction in that case.

graph 4


2. The second factor (i.e. eiβt) is our periodic function. Indeed, eiβt is the same as eiθ and so just remember Euler’s formula to see what it is really:

eiθ = cos(θ) + isin(θ)

The two graphs below represent the idea: as the phase θ = ωt + Δ (the angular frequency or velocity times the time is equal to the phase, plus or minus some phase shift) goes round and round and round (i.e. increases with time), the two components of eiθ, i.e. the real and imaginary part eiθ, oscillate between –1 and 1 because they are both sinusoidal functions (cosine and sine respectively). Now, we could amplify the amplitude by putting another (real) factor in front (a magnitude different than 1) and write reiθ = r·cos(θ) + r·sin(θ) but that wouldn’t change the nature of this thing.

euler13 slkL9

But so how does all of this relate to that other ‘general’ solution which we’ve found for our oscillator, i.e. the one we got without considering these complex-valued exponential functions as solutions. Indeed, what’s the relation between that x = x0cos(ω0t + Δ) equation and that rather frightening c1e(α+βi)t + c2e(α–βi)t equation? Perhaps we should look at x = x0cos(ω0t + Δ) as the real part of that monster? Yes and no. More no than yes actually. Actually… No. We are not going to have some complex exponential and then forget about the imaginary part. What we will do, though, is to find that general solution – i.e. a family of complex-valued functions – but then we’ll only consider those functions for which the imaginary part is zero, so that’s the subset of real-valued functions only.

I guess this must sound like Chinese. Let’s go step by step.

Using complex roots to find real-valued functions

If we re-write d2x/dt2 = –ω02x in the more general ax” + bx’ + cx = 0 form, then we get x” + ω02x = 0 and so the discriminant b– 4ac is equal to –4ω02, and so that’s a negative number. So we need to go for these complex roots. However, before solving this, let’s first restate what we’re actually doing. We have a differential equation that, ultimately, depends on a real variable (the time variable t), but so now we allow complex-valued functions er1e(α+βi)t and er2e(α–βi)t as solutions. To be precise: these are complex-valued functions x of the real variable t.

That being said, it’s fine to note that real numbers are a subset of the complex numbers and so we can just shrug our shoulders and say all that we’re doing is switch to complex-valued functions because we got stuck with that negative determinant and so we had to allow for complex roots. However, in the end, we do want a real-valued solution x(t). So our x(t) = c1e(α+βi)t + c2e(α–βi)t has to be a real-valued function, not a complex-valued function.

That means that we have to take a subset of the family of functions that we’ve found. In other words, the imaginary part of  c1e(α+βi)t + c2e(α–βi)t has to be zero. How can it be zero? Well… It basically means that c1e(α+βi)t and c2e(α–βi)t have to be complex conjugates.

OK… But how do we do that? We need to find a way to write that c1e(α+βi)t + c2e(α–βi)t sum in a more manageable ζ + η form. We can do that by using Euler’s formula once again to re-write those two complex exponentials as follows:

  • e(α+βi)t = eαteiβt = eαt[cos(βt) + isin(βt)]
  • e(α–βi)t = eαte–iβt = eαt[cos(–βt) + isin(–βt)] = eαt[cos(βt) – isin(βt)]

Note that, for the e(α–βi)t expression, we’ve used the fact that cos(–θ) = cos(θ) and that sin(–θ) = –sin(θ). Also note that α and β are real numbers, so they do not have an imaginary part–unlike cand c2, which may or may not have an imaginary part (i.e. they could be pure real numbers, but they could be complex as well).

We can then re-write that c1e(α+βi)t + c2e(α–βi)t sum as:

c1e(α+βi)t + c2e(α–βi)t = c1eαt[cos(βt) + isin(βt)] + c2eαt[cos(βt) – isin(βt)]

= (c1 + c2)eαtcos(βt) + (c1 – c2)ieαtsin(βt)

So what? Well, we want that imaginary part in our solution to disappear and so it’s easy to see that the imaginary part will indeed disappear if c1 – c2 = 0, i.e. if c1 = c= c. So we have a fairly general real-valued solution x(t) = 2c·eαtcos(βt) here, with c some real number. [Note that c has to be some real number because, if we would assume that cand c(and, therefore, c) would be equal complex numbers, then the c1 – c2 factor would also disappear, but then we would have a complex c1 + c2 sum in front of the eαtcos(βt) factor, so that would defeat the purpose of finding real-valued function as a solution because (c1 + c2)eαtcos(βt) would still be complex! […] Are you still with me? :-)]

So, OK, we’ve got the solution and so that should be it, isn’t it? Well… No. Wait. Not yet. Because these coefficients  c1 and c2 may be complex, there’s another solution as well. Look at that formula above. Let us suppose that c1 would be equal to some (real) number c divided by i (so c= c/i), and that cwould be its opposite, so c= –c(i.e. minus c1). Then we would have two complex numbers consisting of an imaginary part only: c= c/i and c= –c= –c/i, and they would be each other’s complex conjugate. Indeed, note that 1/i = i–1= –i and so we can write c= –c·and c= c·i. Then we’d get the following for that c1e(α+βi)t + c2e(α–βi)t sum:

 (c1 + c2)eαtcos(βt) + (c1 – c2)ieαtsin(βt)

= (c/i – c/i)eαtcos(βt) + (c/i + c/i)ieαtsin(βt) = 2c·eαtsin(βt)

So, while cand c2 are complex, our grand result is a real-valued function once again or – to be precise – another family of real-valued functions (that’s because c can take on any value).

Are we done? Yes. There are no other possibilities. So now we just need to remember to apply the principle of superposition: any (real) linear combination of 2c·eαtcos(μt) and 2c·eαtsin(μt) will also be a (real-valued) solution, so the general (real-valued) solution for our problem is:

x(t) = a·2c·eαtcos(βt) + b·2c·eαtsin(βt) = Aeαtcos(βt) + Beαtsin(βt)

eαt[Acos(βt) + Bsin(βt)]

So what do we have here? Well, the first factor is, once again, an ‘envelope’ function: depending on the value of α, (i) negative, (ii) positive or (iii) zero, we have an oscillation that (i) damps out, (ii) goes out of control, or (iii) keeps oscillating in the same steady way forever.

The second part is equivalent to our ‘general’ x(t) = x0cos(ω0t + Δ) solution. Indeed, that x(t) = x0cos(ω0t + Δ) solution is somewhat less ‘general’ than the one above because it does not have the eαt factor. However, x(t) = x0cos(ω0t + Δ) solution is equivalent to the Acos(βt) + Bsin(βt) factor. How’s that? We can show how they are related by using the trigonometric formula for adding angles: cos(α + β) = cos(α)cos(β) – sin(α)sin(β). Indeed, we can write:

x0cos(ω0t + Δ) = x0cos(Δ)cos(ω0t) – x0sin(Δ)sin(ω0t) = Acos(βt) + Bsin(βt)

with A = x0cos(Δ), B = – x0sin(Δ) and, finally, μ = ω0

Are you convinced now? If not… Well… Nothing much I can do, I feel. In that case, I can only encourage you to do a full ‘work-out’ by reading the excellent overview of all possible situations in Paul’s Online MathNotes (

Feynman’s treatment of second-order differential equations

Feynman takes a somewhat different approach in his Lectures. He solves them in a much more general way. At first, I thought his treatment was too confusing and, hence, I would not have mentioned it. However, I like the logic behind, even if his approach is somewhat more messy in terms of notations and all that. Let’s first look at the differential equation once again. Let’s take a system with a friction factor that’s proportional to the speed: Ff = –c·dx/dt. [See my previous post for some comments on that assumption: the assumption is, generally speaking, too much of a simplification but it makes for a ‘nice’ linear equation and so that’s why physicists present it that way.] To ease the math, c is usually written as c = mγ. Hence, γ = c/m is the friction per unit of mass. That makes sense, I’d think. In addition, we need to remember that ω02 = k/m, so k = mω02. Our differential equation then becomes m·d2x/dt2 = –γm·dx/dt – kx (mass times acceleration is the sum of the forces) or m·d2x/dt2 + γm·dx/dt + mω02·x = 0. Dividing the mass factor away gives us an even simpler form:

d2x/dt2 + γdx/dt + ω02x = 0

You’ll remember this differential equation from the previous post: we used it to calculate the (stored) energy and the Q of a mechanical oscillator. However, we didn’t show you how. You now understand why: the stuff above is not easy–the length of the arguments involved is why I am devoting an entire post to it!

Now, instead of assuming some exponential ert as a solution, real- or complex-valued, Feynman assumes a much more general complex-valued function as solution: he substitutes x for x = Aeiαt, with A a complex number as well so we can write A as A = A0eiΔ. That more general assumption allows for the inclusion of a phase shift straight from the start. Indeed, we can write x as x = A0eiΔeiαt = = A0ei(αt+Δ). Does that look complicated? It probably does, because we also have to remember that α is a complex number! So we’ve got a very general complex-valued exponential function indeed here!

However, let’s not get ahead of ourselves and follow Feynman. So he plugs in that complex-valued x = Aeiαt and we get:

(–α+ iγα + ω02)Aeiαt = 0

So far, so good. The logic now is more or less the same as the logic we developed above. We’ve got two factors here: (1) a quadratic equation –αiγα + ω02 (with one complex coefficient iγ) and (2) a complex exponential function Aeiαt. The second factor (Aeiαt) cannot be zero, because that’s x and we assume our oscillator is not standing still. So it’s the first factor (i.e. the quadratic equation in α with a complex coefficient iγ) which has to be zero. So we solve for the roots α and find

α = –iγ/(–2) ± [(–(iγ)2–4ω02)1/2/(-2)] = iγ/2 ± [(γ2–4ω02)1/2/(-2)]

= iγ/2 ± (ω0– γ2/4)1/2 iγ/2 ± ωγ

[We get this by bringing i and –2 inside of the square root expression. It’s not very straightforward but you should be able to figure it out.]

So that’s an interesting expression: the imaginary part of α is iγ/2 and its real part is (ω0– γ2/4)1/2, which we denoted as ωγ in the expression above. [Note that we assume there’s no problem with the square root expression: γ2/4 should be smaller than ω02 so ωγ is supposed to be some real positive number.] And so we’ve got the two solutions xand x2:

x= Aei(iγ/2 + ωγ)t =  Ae–γt/2+iωγ= Ae–γt/2eiωγ

x= Bei(iγ/2 – ωγ)t =  Be–γt/2–iωγ= Be–γt/2e–iωγt

Note, once again, that A and B can be any (complex) number and that, because of the principle of superposition, any linear combination of these two solutions will also be a solution. So the general solution is

x = Ae–γt/2eiωγ+ Be–γt/2e–iωγ= e–γt/2(Aeiωγ+ Be–iωγt) 

Now, we recognize the shape of this: a (real-valued) envelope function e–γt/2 and then a linear combination of two exponentials. But so we want something real-valued in the end so, once again, we need to impose the condition that Aeiωγand Be–iωγare complex conjugates of each other. Now, we can see that eiωγand e–iωγare complex conjugates but what does this say about A and B? Well… The complex conjugate of a product is the product of the complex conjugates of the factors involved: (z1z2)* = (z1*)(z1*). That implies that B has to be the complex conjugate of A: B = A*. So the final (real-valued) solution becomes:

x = e–γt/2(Aeiωγ+ A*e–iωγt) 

Now, I’ll leave it to you to prove that the second factor in the product above (Aeiωγ+ A*e–iωγt) is a real-valued function of the real variable t. It should be the same as x0cos(Δ)cos(ω0t) – x0sin(Δ)sin(ω0t), and that gives you a graph like the one below. However, I can readily imagine that, by now, you’re just thinking: Oh well… Whatever! 🙂


So the difference between Feynman’s approach and the one I presented above (which is the one you’ll find in most textbooks) is the assumption in terms of the specific solution: instead of substituting x for ert, with allowing r to take on complex values, Feynman substitutes x for Aeiαt, and allows both A and α  to take on complex values. It makes the calculations more complicated but, when everything is said and done, I think Feynman’s approach is more consistent because more encompassing. However, that’s subject to taste, and I gather, from comments on the Web, that many people think that this chapter in Feynman’s Lectures is not his best. So… Well… I’ll leave it to you to make the final judgment.

Note: The one critique that is relevant, in regard to Feynman’s treatment of the matter, is that he devotes quite a bit of time and space to explain how these oscillatory or periodic displacements can be viewed as being the real part of a complex exponential. Indeed, cos(ωt) is the real part of eiωt. But so that’s something different than (1) expanding the realm of possible solutions to a second-order differential equation from real-valued functions to complex-valued functions in order to (2) then, once we’ve found the general solution, consider only real-valued functions once again as ‘allowable’ solutions to that equation. I think that’s the gist of the matter really. It took me a while to fully ‘get’ this. I hope this post helps you to understand it somewhat quicker than I did. 🙂


I guess the only thing that I should do now is to work some examples. However, I’ll refer you Paul’s Online Math Notes for that once again (see the reference above). Indeed, it is about time I end my rather lengthy exposé (three posts on the same topic!) on oscillators and resonance. I hope you enjoyed it, although I can readily imagine that it’s hard to appreciate the math involved.

It is not easy indeed: I actually struggled with it, despite the fact that I think I understand complex analysis somewhat. However, the good thing is that, once we’re through it, we can really solve a lot of problems. As Feynman notes: “Linear (differential) equations are so important that perhaps fifty percent of the time we are solving linear equations in physics and engineering.” So, bearing in that mind, we should move on to the next.

Some content on this page was disabled on June 16, 2020 as a result of a DMCA takedown notice from The California Institute of Technology. You can learn more about the DMCA here:

Resonance phenomena

Pre-scriptum (dated 26 June 2020): This post – part of a series of rather simple posts on elementary math and physics – has suffered only a little bit from the attack by the dark force—which is good because I still like it. A few illustrations were removed because of perceived ‘unfair use’, but you will be able to google equivalent stuff. While my views on the true nature of light, matter and the force or forces that act on them have evolved significantly as part of my explorations of a more realist (classical) explanation of quantum mechanics, I think most (if not all) of the analysis in this post remains valid and fun to read. In fact, I would dare to say the whole Universe is all about resonance!

Original post:

One of the most common behaviors of physical systems is the phenomenon of resonance: a body (not only a tuning fork but any body really, such as a body of water, such as the ocean for example) or a system (e.g. an electric circuit) will have a so-called natural frequency, and an external driving force will cause it to oscillate. How it will behave, then, can be modeled using a simple differential equation, and the so-called resonance curve will usually look the same, regardless of what we are looking at. Besides the standard example of an electric circuit consisting of (i) a capacitor, (ii) a resistor and (iii) an inductor, Feynman also gives the following non-standard examples:

1. When the Earth’s atmosphere was disturbed as a result of the Krakatoa volcano explosion in 1883, it resonated at its own natural frequency, and its period was measured to be 10 hours and 20 minutes.

[In case you wonder how one can measure that, an explosion such as that one creates all kinds of waves, but the so-called infrasonic waves are the one we  are talking about here. They circled the globe at least seven times, shattering windows hundreds of miles away. They did not only shatter windows in a radius , but they were also recorded worldwide. That’s how they could be measured a second, third, etc time. How? There was no wind or so, but the infrasonic waves (i.e. ‘sounds’ beneath the lowest limits of human hearing (about 16 or 17 Hz), down to 0.001 Hz) of such oscillation cause minute changes in the atmospheric pressure which can be measured by microbarometers. So the ‘ringing’ of the atmosphere was measurable indeed. A nice article on infrasound waves is Of course, the surface of the Earth was ‘ringing’ as well, and such seismic shocks then produce tsunami waves, which can also be analyzed in terms of natural frequencies.]

2. Crystals can be made to oscillate in response to a changing external electric field, and this crystal resonance phenomenon is used in quartz clocks: the quartz crystal resonator in a basic quartz wristwatch is usually in the shape of a very small tuner fork. Literally: there’s a tiny tuning fork in your wristwatch, made of quartz, that has been laser-trimmed to vibrate at exactly 32,768 Hz, i.e. 215 cycles per second.

3. Some quantum-mechanical phenomena can be analyzed in terms of resonance as well, but then it’s the energy of the interfering particles that assumes the role of the frequency of the external driving force when analyzing the response of the system. Feynman gives the example of gamma radiation from lithium as a function of the energy of protons bombarding the lithium nuclei to provoke the reaction. Indeed, when graphing the intensity of the gamma radiation emitted as a function of the energy, one also gets a resonance curve, as shown below. [Don’t you just love the fact it’s so old? A Physical Review article of 1948! There’s older stuff as well, because this journal actually started in 1893.]

Resonance curve gamma rays

However, let us analyze the phenomenon first in its most classical appearance: an oscillating spring.


We’ve seen the equation for an oscillating spring before. From a math point of view, it’s a differential equation (because one of the terms is a derivative of the dependent variable x) of the second order (because the derivative involved is of the second order):

m(d2x/dt2) = –kx

What’s written here is simply Newton’s Law: the force is –kx (the minus sign is there because the force is directed opposite to the displacement from the equilibrium position), and the force has to equal the oscillating mass on the spring times its acceleration: F = ma.

Now, this can be written as d2x/dt2 = –(k/m)x = –ω02x with ω0= k/m. This ωsymbol uses the Greek omega once again, which we used for the angular velocity of a rotating body. While we do not have anything that’s rotating here, ωis still an angular velocity or, to be more precise, it’s an angular frequency. Indeed, the solution to the differential equation above is

x = x0cos(ω0t + Δ)

The xfactor is the maximum amplitude and that’s, quite simply, determined by how far we pulled or pushed the spring when we started the motion. Now, ω0t + Δ = θ is referred to as the phase of the motion, and it’s easy to see that ωis an angular frequency indeed, because ωequals the time derivative dθ/dt. Hence, ωis the phase change, measured in radians, per second, and that’s the definition of angular frequency or angular velocity. Finally, we have Δ. That’s just a phase shift, and it basically depends on our t = 0 point.

Something on the math

I’ll do a separate post on the math that’s associated with this (second-order differential equations) but, in this case, we can solve the equation in a simple and intuitive way. Look at it: d2x/dt2 = –ω02x. It’s obvious that x has to be a function that comes back to itself after two derivations, but with a minus sign in front, and then we also have that coefficient –ω02. Hmm… What can we think of? An exponential function comes back to itself, and if there’s a coefficient in the exponent, then it will end up as a coefficient in front too: d(eat)/dt = aeat and, hence, d2(eat)/dt2 = a2eat. Waw ! That’s close. In fact, that’s the same equation as the one above, except for the minus sign.

In fact, if you’d quickly look at Paul’s Online Math Notes, you’ll see that we can indeed get the general solution for such second-order differential equation (to be precise: it’s a so-called linear and homogeneous second-order DE with constant coefficients) using that remarkable property of exponentials indeed. However, because of the minus sign, our solution for the equation above will involve complex exponentials, and so we’ll get a general function in a complex variable. However, we’ll then impose that our solution has to be real only and, hence, we’ll take a subset of our more general solution. However, don’t worry about that here now. There’s an easier way.

Apart from the exponential function, there are two other functions that come back to themselves after two derivatives: the sine and cosine functions. Indeed, d2cos(t)/dt2 = –cos(t) and d2sin(t)/dt2 = –sin(t). In fact, the sine and cosine function are obviously the same except for a phase shift equal π/2: cos(t) = sin(t + π/2), so we can choose either. Let’s work with the cosine as for now (we can always convert it to a sine function using that cos(t) = sin(t + π/2) identity). The nice thing about the cosine (and sine) function is that we do get that minus sign when deriving it two times, and we also get that coefficient in front. Indeed: d2cos(ω0t)/dt2 = –ω02cos(ω0t). In short, cos(ω0t) is the right function. The only thing we need to add is that xand Δ, i.e. the amplitude and some phase shift but, as mentioned above, it is easy to understand these will depend on the initial conditions (i.e. the value of x at point t = 0 and the initial pull or push on the spring). In short, x = x0cos(ω0t + Δ) is the complete general solution of the  simple (differential) equation we started with (i.e. m(d2x/dt2) = –kx).

Introducing a driving force

Now, most real-life oscillating systems will be driven by an external force, permanently or just for a short while, and they will also lose some of their energy in a so-called dissipative process: friction or, in an electric circuit, electrical resistance will cause the oscillation to slowly lose amplitude, thereby damping it.

Let’s look at the friction coefficient first. The friction will often be proportional to the speed with which the object moves. Indeed, in the case of a mass on a spring, the drag (i.e. the force that acts on a body as it travels through air or a fluid) is dependent on a lot of things: first and foremost, there’s the fluid itself (e.g. a thick liquid will create more drag than water), and then there’s also the size, shape and velocity of the object. I am following the treatment you’ll find in most textbooks here and so that includes an assumption that the resistance force is proportional to the velocity: Ff = –cv = –c(dx/dt). Furthermore, the constant of proportionality c will usually be written as a product of the mass and some other coefficient γ, so we have Ff = –cv = –mγ(dx/dt). That makes sense because we can look at γ = c/m as the friction per unit of mass.

That being said, the simplification as a whole (i.e. the assumption of proportionality with speed) is rather strange in light of the fact that drag forces are actually proportional to the square of the velocity. If you look it up, you’ll find a formula resembling FD = ρCDAv2/2, with ρ the fluid density, CD the drag coefficient of drag (determined by the shape of the object and a so-called Reynolds number, which is determined from experiments), and A the cross-section area. It’s also rather strange to relate drag to mass by writing c as c = mγ because drag has nothing to do with mass. What about dry friction? So that would be kinetic friction between two surfaces, like when the mass is sliding on a surface? Well… In that case, mass would play a role but velocity wouldn’t, because kinetic friction is independent of the sliding velocity.

So why do physicists use this simplification? One reason is that it works for electric circuits: the equivalent of the velocity in electrical resonance is the current I = dq/dt, so that’s the time derivative of the charge on the capacitor. Now, I is proportional to the voltage difference V, and the proportionality coefficient is the resistance R, so we have V = RI = R(dq/dt). So, in short, the resistance curve we’re actually going to derive below is one for electric circuits. The other reason is that this assumption makes it easier to solve the differential equation that’s involved: it makes for a linear differential equation indeed. In fact, that’s the main reason. After all, professors are professors and so they have to give their students stuff that’s not too difficult to solve. In any case, let’s not be bothered too much and so we’ll just go along with it.

Modeling the driving force is easy: we’ll just assume it’s a sinusoidal force with angular frequency ω (and ω is, obviously, more likely than not somewhat different than the natural frequency ω0). If F is sinusoidal force, we can write it as F = F0cos(ωt + Δ). [So we also assume there is some phase shift Δ.] So now we can write the full equation for our oscillating spring as:

m(d2x/dt2) + γm(dx/dt) + kx = F ⇔ (d2x/dt2)+ γ(dx/dt) + ω02x = F

How do  we solve something like that for x? Well, it’s a differential equation once again. In fact, it’s, once again, a linear differential equation with constant coefficients, and so there’s a general solution method for that. As I mentioned above, that general solution method will involve exponentials and, in general, complex exponentials. I won’t walk you through that. Indeed, I’ll just write the solution because this is not an exercise in solving differential equations. I just want you to understand the solution:

x = ρF0cos(ωt + Δ + θ)

ρ in this equation has nothing to do with some density or so. It’s a factor which depends on m, ω and ω0, in a fairly complicated way in fact:

Formula 1

As we can see from the equation above, the (maximum) amplitude of the oscillation is equal to ρF0. So we have the magnitude of the force F here multiplied by ρ. Hence, ρ is a magnification factor which, multiplied with F0, gives us the ‘amount’ of oscillation.  

As for the θ in the equation above, we’re using this Greek letter (theta) not to refer to the phase, as we usually do, because the phase here is the whole ωt + Δ + θ expression, not just theta! The theta (θ) here is a phase shift as compared to the original force phase ωt + Δ, and θ also depends on ω and ω0. Again, I won’t show how we derived this solution but just accept it as for now:

Formula 2

These three equations, taken together, should allow you to understand what’s going on really. We’ve got an oscillation x = ρF0cos(ωt + Δ + θ), so that’s an equation with this amplification or magnification factor ρ and some phase shift θ. Both depend on the difference between ωand ω, and the two graphs below show how exactly.

Graph 1 Graph 2

The first graph shows the resonance phenomenon and, hence, it’s what’s referred to as the resonance curve: if the difference between ωand ω is small, we get an enormous amplification effect. It would actually go to infinity if it weren’t for the frictional force (but, of course, if the frictional force was not there, the spring would just break as the oscillation builds up and the swings get bigger and bigger).

The second graph shows the phase shift θ. It is interesting to note that the lag θ is equal –π/2 when ω0 is equal to ω, but I’ll let you figure out why this makes sense. [It’s got something to do with that cos(t) = sin(t + π/2) identity, so it’s nothing ‘deep’ really.]

I guess I should, perhaps, also write something about the energy that gets stored in an oscillator like this because, in that resonance curve above, we actually have ρ squared on the vertical axis, and that’s because energy is proportional to the square of the amplitude: E ∝ A2. I should also explain a concept that’s closely related to energy: the so-called Q of an oscillator. It’s an interesting topic, if only because it helps us to understand why, for instance, the waves of the sea are such tremendous stores of energy! Furthermore, I should also write something about transients, i.e. oscillations that dampen because the driving force was turned off so to say. However, I’ll leave that for you to look it up if you’re interested in this topic. Here, I just wanted to present the essentials.

[…] Hey ! I managed to keep this post quite short for a change. Isn’t that good? 🙂

Some content on this page was disabled on June 16, 2020 as a result of a DMCA takedown notice from The California Institute of Technology. You can learn more about the DMCA here:
Some content on this page was disabled on June 16, 2020 as a result of a DMCA takedown notice from The California Institute of Technology. You can learn more about the DMCA here:
Some content on this page was disabled on June 16, 2020 as a result of a DMCA takedown notice from The California Institute of Technology. You can learn more about the DMCA here: