# Strings in classical and quantum physics

Pre-scriptum (dated 26 June 2020): These posts on elementary math and physics have not suffered much from the attack by the dark force—which is good because I still like them. While my views on the true nature of light, matter and the force or forces that act on them have evolved significantly as part of my explorations of a more realist (classical) explanation of quantum mechanics, I think most (if not all) of the analysis in this post remains valid and fun to read. In fact, I find the simplest stuff is often the best. 🙂

Original post:

This post is not about string theory. The goal of this post is much more limited: it’s to give you a better understanding of why the metaphor of the string is so appealing. Let’s recapitulate the basics by see how it’s used in classical as well as in quantum physics.

In my posts on music and math, or music and physics, I described how a simple single string always vibrates in various modes at the same time: every tone is a mixture of an infinite number of elementary waves. These elementary waves, which are referred to as harmonics (or as (normal) modes, indeed) are perfectly sinusoidal, and their amplitude determines their relative contribution to the composite waveform. So we can always write the waveform F(t) as the following sum:

F(t) = a1sin(ωt) + a2sin(2ωt) + a3sin(3ωt) + … + ansin(nωt) + …

[If this is your first reading of my post, and the formula shies you away, please try again. I am writing most of my posts with teenage kids in mind, and especially this one. So I will not use anything else than simple arithmetic in this post: no integrals, no complex numbers, no logarithms. Just a bit of geometry. That’s all. So, yes, you should go through the trouble of trying to understand this formula. The only thing that you may have some trouble with is ω, i.e. angular frequency: it’s the frequency expressed in radians per time unit, rather than oscillations per second, so ω = 2π·f = 2π/T, with the frequency as you know it (i.e. oscillations per second) and T the period of the wave.]

I also noted that the wavelength of these component waves (λ) is determined by the length of the string (L), and by its length only: λ1 = 2L, λ2 = L, λ3 = (2/3)·L. So these wavelengths do not depend on the material of the string, or its tension. At any point in time (so keeping t constant, rather than x, as we did in the equation above), the component waves look like this: etcetera (1/8, 1/9,…,1/n,… 1/∞)

That the wavelengths of the harmonics of any actual string only depend on its length is an amazing result in light of the complexities behind: a simple wound guitar string, for example, is not simple at all (just click the link here for a quick introduction to guitar string construction). Simple piano wire isn’t simple either: it’s made of high-carbon steel, i.e. a very complex metallic alloy. In fact, you should never think any material is simple: even the simplest molecular structures are very complicated things. Hence, it’s quite amazing all these systems are actually linear systems and that, despite the underlying complexity, those wavelength ratios form a simple harmonic series, i.e. a simple reciprocal function y = 1/x, as illustrated below. A simple harmonic series? Hmm… I can’t resist noting that the harmonic series is, in fact, a mathematical beast. While its terms approach zero as x (or n) increases, the series itself is divergent. So it’s not like 1+1/2+1/4+1/8+…+1/2n+…, which adds up to 2. Divergent series don’t add up to any specific number. Even Leonhard Euler – the most famous mathematician of all times, perhaps – struggled with this. In fact, as late as in 1826, another famous mathematician, Niels Henrik Abel (in light of the fact he died at age 26 (!), his legacy is truly amazing), exclaimed that a series like this was “an invention of the devil”, and that it should not be used in any mathematical proof. But then God intervened through Abel’s contemporary Augustin-Louis Cauchy 🙂 who finally cracked the nut by rigorously defining the mathematical concept of both convergent as well as divergent series, and equally rigorously determining their possibilities and limits in mathematical proofs. In fact, while medieval mathematicians had already grasped the essentials of modern calculus and, hence, had already given some kind of solution to Zeno’s paradox of motion, Cauchy’s work is the full and final solution to it. But I am getting distracted, so let me get back to the main story.

More remarkable than the wavelength series itself, is its implication for the respective energy levels of all these modes. The material of the string, its diameter, its tension, etc will determine the speed with which the wave travels up and down the string. [Yes, that’s what it does: you may think the string oscillates up and down, and it does, but the waveform itself travels along the string. In fact, as I explained in my previous post, we’ve got two waves traveling simultaneously: one going one way and the other going the other.] For a specific string, that speed (i.e. the wave velocity) is some constant, which we’ll denote by c. Now, is, obviously, the product of the wavelength (i.e. the distance that the wave travels during one oscillation) and its frequency (i.e. the number of oscillations per time unit), so c = λ·f. Hence, f = c/λ and, therefore, f1 = (1/2)·c/L, f2 = (2/2)·c/L, f3 = (3/2)·c/L, etcetera. More in general, we write fn = (n/2)·c/L. In short, the frequencies are equally spaced. To be precise, they are all (1/2)·c/L apart.

Now, the energy of a wave is directly proportional to its frequency, always, in classical as well as in quantum mechanics. For example, for photons, we have the Planck-Einstein relation: E = h·f = ħ·ω. So that relation states that the energy is proportional to the (light) frequency of the photon, with h (i.e. he Planck constant) as the constant of proportionality. [Note that ħ is not some different constant. It’s just the ‘angular equivalent’ of h, so we have to use ħ = h/2π when frequencies are expressed in angular frequency, i.e. radians per second rather than hertz.] Because of that proportionality, the energy levels of our simple string are also equally spaced and, hence, inserting another proportionality constant, which I’ll denote by a instead of (because it’s some other constant, obviously), we can write:

En = a·fn = (n/2)·a·c/L

Now, if we denote the fundamental frequency f1 = (1/2)·c/L, quite simply, by f (and, likewise, its angular frequency as ω), then we can re-write this as:

En = n·a·f = n·ā·ω (ā = a/2π)

This formula is exactly the same as the formula used in quantum mechanics when describing atoms as atomic oscillators, and why and how they radiate light (think of the blackbody radiation problem, for example), as illustrated below: En = n·ħ·ω = n·h·f. The only difference between the formulas is the proportionality constant: instead of a, we have Planck’s constant here: h, or ħ when the frequency is expressed as an angular frequency. This grand result – that the energy levels associated with the various states or modes of a system are equally spaced – is referred to as the equipartition theorem in physics, and it is what connects classical and quantum physics in a very deep and fundamental way.

In fact, because they’re nothing but proportionality constants, the value of both a and h depends on our units. If w’d use the so-called natural units, i.e. equating ħ to 1, the energy formula becomes En = n·ω, and, hence, our unit of energy and our unit of frequency become one and the same. In fact, we can, of course, also re-define our time unit such that the fundamental frequency ω is one, i.e. one oscillation per (re-defined) time unit, so then we have the following remarkable formula:

En = n

Just think about it for a moment: what I am writing here is E0 = 0, E1 = 1, E2 = 2, E3 = 3, E4 = 4, etcetera. Isn’t that amazing? I am describing the structure of a system here – be it an atom emitting or absorbing photons, or a macro-thing like a guitar string – in terms of its basic components (i.e. its modes), and it’s as simple as counting: 0, 1, 2, 3, 4, etc.

You may think I am not describing anything real here, but I am. We cannot do whatever we wanna do: some stuff is grounded in reality, and in reality only—not in the math. Indeed, the fundamental frequency of our guitar string – which we used as our energy unit – is a property of the string, so that’s real: it’s not just some mathematical shape out: it depends on the string’s length (which determines its wavelength), and it also depends on the propagation speed of the wave, which depends on other basic properties of the string, such as its material, its diameter, and its tension. Likewise, the fundamental frequency of our atomic oscillator is a property of the atomic oscillator or, to use a much grander term, a property of the Universe. That’s why h is a fundamental physical constant. So it’s not like π or e. [When reading physics as a freshman, it’s always useful to clearly distinguish physical constants (like Avogadro’s number, for example) from mathematical constants (like Euler’s number).]

The theme that emerges here is what I’ve been saying a couple of times already: it’s all about structure, and the structure is amazingly simple. It’s really that equipartition theorem only: all you need to know is that the energy levels of the modes of a system – any system really: an atom, a molecular system, a string, or the Universe itself – are equally spaced, and that the space between the various energy levels depends on the fundamental frequency of the system. Moreover, if we use natural units, and also re-define our time unit so the fundamental frequency is equal to 1 (so the frequencies of the other modes are 2, 3, 4 etc), then the energy levels are just 0, 1, 2, 3, 4 etc. So, yes, God kept things extremely simple. 🙂

In order to not cause too much confusion, I should add that you should read what I am writing very carefully: I am talking the modes of a system. The system itself can have any energy level, of course, so there is no discreteness at the level of the system. I am not saying that we don’t have a continuum there. We do. What I am saying is that its energy level can always be written as a (potentially infinite) sum of the energies of its components, i.e. its fundamental modes, and those energy levels are discrete. In quantum-mechanical systems, their spacing is h·f, so that’s the product of Planck’s constant and the fundamental frequency. For our guitar, the spacing is a·f (or, using angular frequency, ā·ω: it’s the same amount). But that’s it really. That’s the structure of the Universe. 🙂

Let me conclude by saying something more about a. What information does it capture? Well… All of the specificities of the string (like its material or its tension) determine the fundamental frequency f and, hence, the energy levels of the basic modes of our string. So a has nothing to do with the particularities of our string, of our system in general. However, we can, of course, pluck our string very softly or, conversely, give it a big jolt. So our a coefficient is not related to the string as such, but to the total energy of our string. In other words, a is related to those amplitudes  a1, a2, etc in our F(t) = a1sin(ωt) + a2sin(2ωt) + a3sin(3ωt) + … + ansin(nωt) + … wave equation.

How exactly? Well… Based on the fact that the total energy of our wave is equal to the sum of the energies of all of its components, I could give you some formula. However, that formula does use an integral. It’s an easy integral: energy is proportional to the square of the amplitude, and so we’re integrating the square of the wave function over the length of the string. But then I said I would not have any integral in this post, and so I’ll stick to that. In any case, even without the formula, you know enough now. For example, one of the things you should be able to reflect on is the relation between a and h. It’s got to do with structure, of course. 🙂 But I’ll let you think about that yourself.

[…] Let me help you. Think of the meaning of Planck’s constant h. Let’s suppose we’d have some elementary ‘wavicle’, like that elementary ‘string’ that string theorists are trying to define: the smallest ‘thing’ possible. It would have some energy, i.e. some frequency. Perhaps it’s just one full oscillation. Just enough to define some wavelength and, hence, some frequency indeed. Then that thing would define the smallest time unit that makes sense: it would the time corresponding to one oscillation. In turn, because of the E = h·relation, it would define the smallest energy unit that makes sense. So, yes, h is the quantum (or fundamental unit) of energy. It’s very small indeed (h = 6.626070040(81)×10−34 J·s, so the first significant digit appears only after 33 zeroes behind the decimal point) but that’s because we’re living at the macro-scale and, hence, we’re measuring stuff in huge units: the joule (J) for energy, and the second (s) for time. In natural units, h would be one. [To be precise, physicist prefer to equate ħ, rather than h, to one when talking natural units. That’s because angular frequency is more ‘natural’ as well when discussing oscillations.]

What’s the conclusion? Well… Our will be some integer multiple of h. Some incredibly large multiple, of course, but a multiple nevertheless. 🙂

Post scriptum: I didn’t say anything about strings in this post or, let me qualify, about those elementary ‘strings’ that string theorists try to define. Do they exist? Feynman was quite skeptical about it. He was happy with the so-called Standard Model of phyics, and he would have been very happy to know that the existence Higgs field has been confirmed experimentally (that discovery is what prompted my blog!), because that confirms the Standard Model. The Standard Model distinguishes two types of wavicles: fermions and bosons. Fermions are matter particles, such as quarks and electrons. Bosons are force carriers, like photons and gluons. I don’t know anything about string theory, but my guts instinct tells me there must be more than just one mathematical description of reality. It’s the principle of duality: concepts, theorems or mathematical structures can be translated into other concepts, theorems or structures. But… Well… We’re not talking equivalent descriptions here: string theory is different theory, it seems. For a brief but totally incomprehensible overview (for novices at least), click on the following link, provided by the C.N. Yang Institute for Theoretical Physics. If anything, it shows I’ve got a lot more to study as I am inching forward on the difficult Road to Reality. 🙂

Some content on this page was disabled on June 16, 2020 as a result of a DMCA takedown notice from The California Institute of Technology. You can learn more about the DMCA here:

# Light: relating waves to photons

Pre-scriptum (dated 26 June 2020): Some of the relevant illustrations in this post were removed as a result of an attack by the dark force. In any case, my ideas on the nature of light and photons have evolved considerably, so you should probably read my papers instead of these old blog posts.

Original post:

This is a concluding note on my ‘series’ on light. The ‘series’ gave you an overview of the ‘classical’ theory: light as an electromagnetic wave. It was very complete, including relativistic effects (see my previous post). I could have added more – there’s an equivalent for four-vectors, for example, when we’re dealing with frequencies and wave numbers: quantities that transform like space and time under the Lorentz transformations – but you got the essence.

One point we never ever touched upon, was that magnetic field vector though. It is there. It is tiny because of that 1/c factor, but it’s there. We wrote it as All symbols in bold are vectors, of course. The force is another vector vector cross-product: F = qv×B, and you need to apply the usual right-hand screw rule to find the direction of the force. As it turns out, that force – as tiny as it is – is actually oriented in the direction of propagation, and it is what is responsible for the so-called radiation pressure.

So, yes, there is a ‘pushing momentum’. How strong is it? What power can it deliver? Can it indeed make space ships sail? Well… The magnitude of the unit vector er’ is obviously one, so it’s the values of the other vectors that we need to consider. If we substitute and average F, the thing we need to find is:

〈F〉 = q〈vE〉/c

But the charge q times the field is the electric force, and the force on the charge times the velocity is the work dW/dt being done on the charge. So that should equal the energy absorbed that is being absorbed from the light per second. Now, I didn’t look at that much. It’s actually one of the very few things I left – but I’ll refer you to Feynman’s Lectures if you want to find out more: there’s a fine section on light scattering, introducing the notion of the Thompson scattering cross section, but – as said – I think you had enough as for now. Just note that 〈F〉 = [dW/dt]/c and, hence, that the momentum that light delivers is equal to the energy that is absorbed (dW/dt) divided by c.

So the momentum carried is 1/c times the energy. Now, you may remember that Planck solved the ‘problem’ of black-body radiation – an anomaly that physicists couldn’t explain at the end of the 19th century – by re-introducing a corpuscular theory of light: he said light consisted of photons. We all know that photons are the kind of ‘particles’ that the Greek and medieval corpuscular theories of light envisaged but, well… They have a particle-like character – just as much as they have a wave-like character. They are actually neither, and they are physically and mathematically being described by these wave functions – which, in turn, are functions describing probability amplitudes. But I won’t entertain you with that here, because I’ve written about that in other posts. Let’s just go along with the ‘corpuscular’ theory of photons for a while.

Photons also have energy (which we’ll write as W instead of E, just to be consistent with the symbols above) and momentum (p), and Planck’s Law says how much:

W = hf and p = W/c

So that’s good: we find the same multiplier 1/c here for the momentum of a photon. In fact, this is more than just a coincidence of course: the “wave theory” of light and Planck’s “corpuscular theory” must of course link up, because they are both supposed to help us understand real-life phenomena.

There’s even more nice surprises. We spoke about polarized light, and we showed how the end of the electric field vector describes a circular or elliptical motion as the wave travels to space. It turns out that we can actually relate that to some kind of angular momentum of the wave (I won’t go into the details though – because I really think the previous posts have really been too heavy on equations and complicated mathematical arguments) and that we could also relate it to a model of photons carrying angular momentum, “like spinning rifle bullets” – as Feynman puts it.

However, he also adds: “But this ‘bullet’ picture is as incomplete as the ‘wave’ picture.” And so that’s true and that should be it. And it will be it. I will really end this ‘series’ now. It was quite a journey for me, as I am making my way through all of these complicated models and explanations of how things are supposed to work. But a fascinating one. And it sure gives me a much better feel for the ‘concepts’ that are hastily explained in all of these ‘popular’ books dealing with science and physics, hopefully preparing me better for what I should be doing, and that’s to read Penrose’s advanced mathematical theories.

Some content on this page was disabled on June 20, 2020 as a result of a DMCA takedown notice from Michael A. Gottlieb, Rudolf Pfeiffer, and The California Institute of Technology. You can learn more about the DMCA here:

# Compactifying complex spaces

Pre-scriptum (dated 26 June 2020): the material in this post remains interesting but is, strictly speaking, not a prerequisite to understand quantum mechanics. It’s yet another example of how one can get lost in math when studying or teaching physics. Original post:

In this post, I’ll try to explain how Riemann surfaces (or topological spaces in general) are transformed into compact spaces. Compact spaces are, in essence, closed and bounded subsets of some larger space. The larger space is unbounded – or ‘infinite’ if you want (the term ‘infinite’ is less precise – from a mathematical point of view at least).

I am sure you have all seen it: the Euclidean or complex plane gets wrapped around a sphere (the so-called Riemann sphere), and the Riemann surface of a square root function becomes a torus (i.e. a donut-like object). And then the donut becomes a coffee cup (yes: just type ‘donut and coffee cup’ and look at the animation). The sphere and the torus (and the coffee cup of course) are compact spaces indeed – as opposed to the infinite plane, or the infinite Riemann surface representing the domain of a (complex) square root function. But what does it all mean?

Let me, for clarity, start with a note on the symbols that I’ll be using in this post. I’ll use a boldface z for the complex number z = (x, y) = reiθ in this post (unlike what I did in my previous posts, in which I often used standard letters for complex numbers), or for any other complex number, such as w = u + iv. That’s because I want to reserve the non-boldface letter z for the (real) vertical z coordinate in the three-dimensional (Cartesian or Euclidean) coordinate space, i.e. R3. Likewise, non-boldface letters such as x, y or u and v, denote other real numbers. Note that I will also use a boldface and a boldface to denote the set of real numbers and the complex space respectively. That’s just because the WordPress editor has its limits and, among other things, it can’t do blackboard bold (i.e. these double struck symbols which you usually see as symbols for the set of real and complex numbers respectively). OK. Let’s go for it now.

In my previous post, I introduced the concept of a Riemann surface using the multivalued square root function w = z1/2 = √z. The square root function has only two values. If we write z as z = rei θ, then we can write these two values as w1 = √r ei(θ/2) and w2 = √r ei(θ/2 ± π). Now, √r ei(θ/2 ± π) is equal to √r ei(±π)ei(θ/2) =  – √r ei(θ/2) and, hence, the second root is just the opposite of the first one, so w= – w1.

Introducing the concept of a Riemann surface using a ‘simple’ quadratic function may look easy enough but, in fact, this square root function is actually not the easiest one to start with. First, a simple single-valued function, such as w = 1/z (i.e. the function that is associated with the Riemann sphere) for example, would obviously make for a much easier point of departure. Secondly, the fact that we’re working with a limited number of values, as opposed to an infinite number of values (which is the case for the log z function for example) introduces this particularity of a surface turning back into itself which, as I pointed out in my previous post, makes the visualization of the surface somewhat tricky – to the extent it may actually prevent a good understanding of what’s actually going on.

Indeed, in the previous post I explained how the Riemann surface of the square root function can be visualized in the three-dimensional Euclidean space (i.e. R3). However, such representations only show the real part of z1/2, i.e. the vertical distance Re(z1/2) = √r cos(θ/2 + nπ), with n = 0 or ± 1. So these representations, like the one below for example, do not show the imaginary part, i.e.  Im(z1/2) = √r sin(θ/2 + nπ) (n = 0, ± 1).

That’s both good and bad. It’s good because, in a graph like this, you want one point to represent one point only, and so you wouldn’t get that if you would superimpose the plot with the imaginary part of wz1/2 on the plot showing the real part only. But it’s also bad, because one often forgets that we’re only seeing some part of the ‘real’ picture here, namely the real part, and so one often forgets to imagine the imaginary part. 🙂 The thick black polygonal line in the two diagrams in the illustration above shows how, on this Riemann surface (or at least its real part), the argument θ of  z = rei θ will go from 0 to 2π (and further), i.e. we’re making (more than) a full turn around the vertical axis, as the argument Θ of w =  z1/2 = √reiΘ makes half a turn only (i.e. Θ goes from 0 to π only). That’s self-evident because Θ = θ/2. [The first diagram in the illustration above represents the (flat) w plane, while the second one is the Riemann surface of the square root function, so it represents but so we have like two points for every z on the flat z plane: one for each root.]

All these visualizations of Riemann surfaces (and the projections on the z and w plane that come with them) have their limits, however. As mentioned in my previous post, one major drawback is that we cannot distinguish the two distinct roots for all of the complex numbers z on the negative real axis (i.e. all the points z = rei θ for which θ is equal to ±π, ±3π,…). Indeed, the real part of wz1/2, i.e. Re(w), is equal to zero for both roots there, and so, when looking at the plot, you may get the impression that we get the same values for w there, so that the two distinct roots of z (i.e. wand w2) coincide. They don’t: the imaginary part of  wand wis different there, so we need to look at the imaginary part of w too. Just to be clear on this: on the diagram above, it’s where the two sheets of the Riemann surface cross each other, so it’s like there’s an infinite number of branch points, which is not the case: the only branch point is the origin.

So we need to look at the imaginary part too. However, if we look at the imaginary part separately, we will have a similar problem on the positive real axis: the imaginary part of the two roots coincides there, i.e. Im(w) is zero, for both roots, for all the points z = rei θ for which θ = 0, 2π, 4π,… That’s what represented and written in the graph below. The graph above is a cross-section, so to say, of the Riemann surface  w = z1/2 that is orthogonal to the z plane. So we’re looking at the x axis from -∞ to +∞ along the y axis so to say. The point at the center of this graph is the origin obviously, which is the branch point of our function w = z1/2, and so the y axis goes through it but we can’t see it because we’re looking along that axis (so the y-axis is perpendicular to the cross-section).

This graph is one I made as I tried to get some better understanding of what a ‘branch point’ actually is. Indeed, the graph makes it perfectly clear – I hope 🙂 – that we really have to choose between one of the two branches of the function when we’re at the origin, i.e. the branch point. Indeed, we can pick either the n = 0 branch or the n = ±1 branch of the function, and then we can go in any direction we want as we’re traveling on that Riemann surface, but so our initial choice has consequences: as Dr. Teleman (whom I’ll introduce later) puts it, “any choice of w, followed continuously around the origin, leads, automatically, to the opposite choice as we turn around it.” For example, if we take the w1 branch (or the ‘positive’ root as I call it – even if complex numbers cannot be grouped into ‘positive’ or ‘negative’ numbers), then we’ll encounter the negative root wafter one loop around the origin. Well… Let me immediately qualify that statement: we will still be traveling on the wbranch but so the value of w1 will be the opposite or negative value of our original was we add 2π to arg z = θ. Mutatis mutandis, we’re in a similar situation if we’d take the w2 branch. Does that make sense?

Perhaps not, but I can’t explain it any better. In any case, the gist of the matter is that we can switch from the wbranch to the wbranch at the origin, and also note that we can only switch like that there, at the branch point itself: we can’t switch anywhere else. So there, at the branch point, we have some kind of ‘discontinuity’, in the sense that we have a genuine choice between two alternatives.

That’s, of course, linked to the fact that one cannot define the value of our function at the origin: 0 is not part of the domain of the (complex) square root function, or of the (complex) logarithmic function in general (remember that our square root function is just a special case of the log function) and, hence, the function is effectively not analytic there. So it’s like what I said about the Riemann surface for the log z function: at the origin, we can ‘take the elevator’ to any other level, so to say, instead of having to walk up and down that spiral ramp to get there. So we can add or subtract ± 2nπ to θ without any sweat.

So here it’s the same. However, because it’s the square root function, we’ll only see two buttons to choose from in that elevator, and our choice will determine whether we get out at level Θ = α (i.e. the wbranch) or at level Θ = α ± π (i.e. the wbranch). Of course, you can try to push both buttons at the same time but then I assume that the elevator will make some kind of random choice for you. 🙂 Also note that the elevator in the log z parking tower will probably have a numpad instead of buttons, because there’s infinitely many levels to choose from. 🙂

OK. Let’s stop joking. The idea I want to convey is that there’s a choice here. The choice made determines whether you’re going to be looking at the ‘positive’ roots of z, i.e. √r(cosΘ+sinΘ) or at the ‘negative’ roots of z, i.e. √r(cos(Θ±π)+isin(Θ±π)), or, equivalently (because Θ = θ/2) if you’re going to be looking at the values of w for θ going from 0 to 2π, or the values of w for θ going from 2π to 4π.

Let’s try to imagine the full picture and think about how we could superimpose the graphs of both the real and imaginary part of w. The illustration below should help us to do so: the blue and red image should be shifted over and across each other until they overlap completely. [I am not doing it here because I’d have to make one surface transparent so you can see the other one behind – and that’s too much trouble now. In addition, it’s good mental exercise for you to imagine the full picture in your head.] It is important to remember here that the origin of the complex z plane, in both images, is at the center of these cuboids (or ‘rectangular prisms’ if you prefer that term). So that’s what the little red arrow points is pointing at in both images and, hence, the final graph, consisting of the two superimposed surfaces (the imaginary and the real one), should also have one branch point only, i.e. at the origin.

[…]

I guess I am really boring my imaginary reader here by being so lengthy but so there’s a reason: when I first tried to imagine that ‘full picture’, I kept thinking there was some kind of problem along the whole x axis, instead of at the branch point only. Indeed, these two plots suggest that we have two or even four separate sheets here that are ‘joined at the hip’ so to say (or glued or welded or stitched together – whatever you want to call it) along the real axis (i.e. the x axis of the z plane). In such (erroneous) view, we’d have two sheets above the complex z plane (one representing the imaginary values of √z and one the real part) and two below it (again one with the values of the imaginary part of √z and one representing the values of the real part). All of these ‘sheets’ have a sharp fold on the x axis indeed (everywhere else they are smooth), and that’s where they join in this (erroneous) view of things.

Indeed, such thinking is stupid and leads nowhere: the real and imaginary parts should always be considered together, and so there’s no such thing as two or four sheets really: there is only one Riemann surface with two (overlapping) branches. You should also note that where these branches start or end is quite arbitrary, because we can pick any angle α to define the starting point of a branch. There is also only one branch point. So there is no ‘line’ separating the Riemann surface into two separate pieces. There is only that branch point at the origin, and there we decide what branch of the function we’re going to look at: the n = 0 branch (i.e. we consider arg w = Θ to be equal to θ/2) or the n = ±1 branch (i.e. we take the Θ = θ/2 ± π equation to calculate the values for wz1/2).

OK. Enough of these visualizations which, as I told you above already, are helpful only to some extent. Is there any other way of approaching the topic?

Of course there is. When trying to understand these Riemann surfaces (which is not easy when you read Penrose because he immediately jumps to Riemann surfaces involving three or more branch points, which makes things a lot more complicated), I found it useful to look for a more formal mathematical definition of a Riemann surface. I found such more formal definition in a series of lectures of a certain Dr. C. Teleman (Berkeley, Lectures on Riemann surfaces, 2003). He defines them as graphs too, or surfaces indeed, just like Penrose and others, but, in contrast, he makes it very clear, right from the outset, that it’s really the association (i.e. the relation) between z and w which counts, not these rather silly attempts to plot all these surfaces in three-dimensional space.

Indeed, according to Dr. Teleman’s introduction to the topic, a Riemann surface S is, quite simply, a set of ‘points’ (z, w) in the two-dimensional complex space C= C x(so they’re not your typical points in the complex plane but points with two complex dimensions), such that w and z are related with each other by a holomorphic function w = f(z), which itself defines the Riemann surface. The same author also usefully points out that this holomorphic function is usually written in its implicit form, i.e. as P(z, w) = 0 (in case of a polynomial function) or, more generally, as F(z, w) = 0.

There are two things you should note here. The first one is that this eminent professor suggests that we should not waste too much time by trying to visualize things in the three-dimensional R3 = R x R x R space: Riemann surfaces are complex manifolds and so we should tackle them in their own space, i.e. the complex Cspace. The second thing is linked to the first: we should get away from these visualizations, because these Riemann surfaces are usually much and much more complicated than a simple (complex) square root function and, hence, are usually not easy to deal with. That’s quite evident when we consider the general form of the complex-analytical (polynomial) P(z, w) function above, which is P(z, w) = wn + pn-1(z)wn-1 + … + p1(z)w + p0(z), with the pk(z) coefficients here being polynomials in z themselves.

That being said, Dr. Teleman immediately gives a ‘very simple’ example of such function himself, namely w = [(z– 1) + ((zk2)]1/2. Huh? If that’s regarded as ‘very simple’, you may wonder what follows. Well, just look him up I’d say: I only read the first lecture and so there are fourteen more. 🙂

But he’s actually right: this function is not very difficult. In essence, we’ve got our square root function here again (because of the 1/2 exponent), but with four branch points this time, namely ± 1 and ± k (i.e. the positive and negative square roots of 1 and krespectively, cf. the (z– 1)  and (z– k2) terms in the argument of this function), instead of only one (the origin).

Despite the ‘simplicity’ of this function, Dr. Teleman notes that “we cannot identify this shape by projection (or in any other way) with the z-plane or the w-plane”, which confirms the above: Riemann surfaces are usually not simple and, hence, these ‘visualizations’ don’t help all that much. However, while not ‘identifying the shape’ of this particular square root function, Dr. Teleman does make the following drawing of the branch points: This is also some kind of cross-section of the Riemann surface, just like the one I made above for the ‘super-simple’ w = √z function: the dotted lines represent the imaginary part of w = [(z– 1) + (z– k2)]1/2, and the non-dotted lines are the real part of the (double-valued) w function. So that’s like ‘my’ graph indeed, except that we’ve got four branch points here, so we can make a choice between one of the two branches of at each of them.

[Note that one obvious difficulty in the interpretation of Dr. Teleman’s little graph above is that we should not assume that the complex numbers k and k are actually lying on the same line as 1 and -1 (i.e. the real line). Indeed, k and k are just standard complex numbers and most complex numbers do not lie on the real line. While that makes the interpretation of that simple graph of Dr. Teleman somewhat tricky, it’s probably less misleading than all these fancy 3D graphs. In order to proceed, we can either assume that this z axis is some polygonal line really, representing line segments between these four branch points or, even better, I think we should just accept the fact we’re looking at the z plane here along the z plane itself, so we can only see it as a line and we shouldn’t bother about where these points k and –k are located. In fact, their absolute value may actually be smaller than 1, in which case we’d probably want to change the order of the branch points in Dr. Teleman’s little graph).]

Dr. Teleman doesn’t dwell too long on this graph and, just like Penrose, immediately proceeds to what’s referred to as the compactification of the Riemann space, so that’s this ‘transformation’ of this complex surface into a donut (or a torus as it’s called in mathematics). So how does one actually go about that?

Well… Dr. Teleman doesn’t waste too many words on that. In fact, he’s quite cryptic, although he actually does provide much more of an explanation than Penrose does (Penrose’s treatment of the matter is really hocus-pocus I feel). So let me start with a small introduction of my own once again.

I guess it all starts with the ‘compactification’ of the real line, which is visualized below: we reduce the notion of infinity to a ‘point’ (this ‘point’ is represented by the symbol ∞ without a plus or minus sign) that bridges the two ‘ends’ of the real line (i.e. the positive and negative real half-line). Like that, we can roll up single lines and, by extension, the whole complex plane (just imagine rolling up the infinite number of lines that make up the plane I’d say :-)). So then we’ve got an infinitely long cylinder. But why would we want to roll up a line, or the whole plane for that matter? Well… I don’t know, but I assume there are some good reasons out there: perhaps we actually do have some thing going round and round, and so then it’s probably better to transform our ‘real line’ domain into a ‘real circle’ domain. The illustration below shows how it works for a finite sheet, and I’d also recommend my imaginary reader to have a look at the Riemann Project website (http://science.larouchepac.com/riemann/page/23), where you’ll find some nice animations (but do download Wolfram’s browser plugin if your Internet connection is slow: downloading the video takes time). One of the animations shows how a torus is, indeed, ideally suited as a space for a phenomenon characterized by two “independent types of periodicity”, not unlike the cylinder, which is the ‘natural space’ for “motion marked by a single periodicity”. However, as I explain in a note below this post, the more natural way to roll or wrap up a sheet or a plane is to wrap it around a sphere, rather than trying to create a donut. Indeed, if we’d roll the infinite plane up in a donut, we’ll still have a line representing infinity (see below) and so it looks quite ugly: if you’re tying ends up, it’s better you tie all of them up, and so that’s what you do when you’d wrap the plane up around a sphere, instead of a torus. OK. Enough on planes. Back to our Riemann surface. Because the square root function w has two values for each z, we cannot make a simple sphere: we have to make a torus. That’s because a sphere has one complex dimension only, just like a plane, and, hence, they are topologically equivalent so to say. In contrast, a double-valued function has two ‘dimensions’ so to say and, hence, we have to transform the Riemann surface into something which accommodates that, and so that’s a torus (or a coffee cup :-)). In topological jargon, a torus has genus one, while the complex plane (and the Riemann sphere) has genus zero.

[Please do note that this will be the case regardless of the number of branch points. Indeed, Penrose gives the example of the function w = (1 – z3)1/2, which has three branch points, namely the three cube roots of the 1 – zexpression (these three roots are obviously equal to the three cube roots of unity). However, ‘his’ Riemann surface is also a Riemann surface of a square root function (albeit one with a more complicated form than the ‘core’ w = z1/2 example) and, hence, he also wraps it up as a donut indeed, instead of a sphere or something else.]

I guess that you, my imaginary reader, have stopped reading all of this nonsense. If you haven’t, you’re probably thinking: why don’t we just do it? How does it work? What’s the secret?

Frankly, the illustration in Penrose’s Road to Reality (i.e. Fig. 8.2 on p. 137) is totally useless in terms of understanding how it’s being done really. In contrast, Dr. Teleman is somewhat more explicit and so I’ll follow him here as much as I can while I try to make sense of it (which is not as easy as you might think).

The short story is the following: Dr. Teleman first makes two ‘cuts’ (or ‘slits’) in the z plane, using the four branch points as the points where these ‘cuts’ start and end. He then uses these cuts to form two cylinders, and then he joins the ends of these cylinders to form that torus. That’s it. The drawings below illustrate the proceedings.  Huh? OK. You’re right: the short story is not correct. Let’s go for the full story. In order to be fair to Dr. Teleman, I will literally copy all what he writes on what is illustrated above, and add my personal comments and interpretations in square brackets (so when you see those square brackets, that’s [me] :-)). So this is what Dr. Teleman has to say about it:

The function w = [(z– 1) + ((z– k2)]1/2 behaves like the [simple] square root [function] near ± 1 and ± k. The important thing is that there is no continuous single-valued choice of w near these points [shouldn’t he say ‘on’ these points, instead of ‘near’?]: any choice of w, followed continuously round any of the four points, leads to the opposite choice upon return.

[The formulation may sound a bit weird, but it’s the same as what happens on the simple z1/2 surface: when we’re on one of the two branches, the argument of w changes only gradually and, going around the origin, starting from one root of z (let’s say the ‘positive’ root w1), we arrive, after one full loop around the origin on the z plane (i.e. we add 2π to arg z = θ), at the opposite value, i.e. the ‘negative’ root w= -w1.]

Defining a continuous branch for the function necessitates some cuts. The simplest way is to remove the open line segments joining 1 with k and -1 with –k. On the complement of these segments [read: everywhere else on the z plane], we can make a continuous choice of w, which gives an analytic function (for z ≠ ±1, ±k). The other branch of the graph is obtained by a global change of sign. [Yes. That’s obvious: the two roots are each other’s opposite (w= –w1) and so, yes, the two branches are, quite simply, just each other’s opposite.]

Thus, ignoring the cut intervals for a moment, the graph of w breaks up into two pieces, each of which can be identified, via projection, with the z-plane minus two intervals (see Fig. 1.4 above). [These ‘projections’ are part and parcel of this transformation business it seems. I’ve encountered more of that stuff and so, yes, I am following you, Dr. Teleman!]

Now, over the said intervals [i.e. between the branch points], the function also takes two values, except at the endpoints where those coincide. [That’s true: even if the real parts of the two roots are the same (like on the negative real axis for our  z1/2 s), the imaginary parts are different and, hence, the roots are different for points between the various branch points, and vice versa of course. This is actually one of the reasons why I don’t like Penrose’s illustration on this matter: his illustration suggests that this is not the case.]

To understand how to assemble the two branches of the graph, recall that the value of w jumps to its negative as we cross the cuts. [At first, I did not get this, but so it’s the consequence of Dr. Teleman ‘breaking up the graph into tow pieces’. So he separates the two branches indeed, and he does so at the ‘slits’ he made, so that’s between the branch points. It follows that the value of w will indeed jump to its opposite value as we cross them, because we’re jumping on the other branch there.]

Thus, if we start on the upper sheet and travel that route, we find ourselves exiting on the lower sheet. [That’s the little arrows on these cuts.] Thus, (a) the far edges of the cuts on the top sheet must be identified with the near edges of the cuts on the lower sheet; (b) the near edges of the cuts on the top sheet must be identified with the far edges on the lower sheet; (c) matching endpoints are identified; (d) there are no other identifications. [Point (d) seems to be somewhat silly but I get it: here he’s just saying that we can’t do whatever we want: if we glue or stitch or weld all of these patches of space together (or should I say copies of patches of space?), we need to make sure that the points on the edges of these patches are the same indeed.]

A moment’s thought will convince us that we cannot do all this in in R3, with the sheets positioned as depicted, without introducing spurious crossings. [That’s why Brown and Churchill say it’s ‘physically impossible.’] To rescue something, we flip the bottom sheet about the real axis.

[Wow! So that’s the trick! That’s the secret – or at least one of them! Flipping the sheet means rotating it by 180 degrees, or multiplying all points twice with i, so that’s i2 = -1 and so then you get the opposite values. Now that’s a smart move!]

The matching edges of the cuts are now aligned, and we can perform the identifications by stretching each of the surfaces around the cut to pull out a tube. We obtain a picture representing two planes (ignore the boundaries) joined by two tubes (see Fig. 1.5.a above).

[Hey! That’s like the donut-to-coffee-cup animation, isn’t it? Pulling out a tube? Does that preserve angles and all that? Remember it should!]

For another look at this surface, recall that the function z → R2/z identifies the exterior of the circle ¦z¦ < R with the punctured disc z: ¦z¦ < R and z ≠ 0 (it’s a punctured disc so its center is not part of the disc). Using that, we can pull the exteriors of the discs, missing from the picture above, into the picture as punctured discs, and obtain a torus with two missing points as the definitive form of our Riemann surface (see Fig. 1.5.b).

[Dr. Teleman is doing another hocus-pocus thing here. So we have those tubes with an infinite plane hanging on them, and so it’s obvious we just can’t glue these two infinite planes together because it wouldn’t look like a donut 🙂. So we first need to transform them into something more manageable, and so that’s the punctured discs he’s describing. I must admit I don’t quite follow him here, but I can sort of sense – a little bit at least – what’s going on.]

[…]

Phew! Yeah, I know. My imaginary reader will surely feel that I don’t have a clue of what’s going on, and that I am actually not quite ready for all of this high-brow stuff – or not yet at least. He or she is right: my understanding of it all is rather superficial at the moment and, frankly, I wish either Penrose or Teleman would explain this compactification thing somewhat better. I also would like them to explain why we actually need to do this compactification thing, why it’s relevant for the real world.

Well… I guess I can only try to move forward as good as I can. I’ll keep you/myself posted.

Note: As mentioned above, there is more than one way to roll or wrap up the complex plane, and the most natural way of doing this is to do it around a sphere, i.e. the so-called Riemann sphere, which is illustrated below. This particular ‘compactification’ exercise is equivalent to a so-called stereographic projection: it establishes a one-on-one relationship between all points on the sphere and all points of the so-called extended complex plane, which is the complex plane plus the ‘point’ at infinity (see my explanation on the ‘compactification’ of the real line above).

But so Riemann surfaces are associated with complex-analytic functions, right? So what’s the function? Well… The function with which the Riemann sphere is associated is w = 1/z. [1/z is equal to z = z*/¦z¦, with z* = x – iy, i.e. the complex conjugate of z = x + iy, and ¦z¦ the modulus or absolute value of z, and so you’ll recognize the formulas for the stereographic projection here indeed.]

OK. So what? Well… Nothing much. This mapping from the complex z plane to the complex w plane is conformal indeed, i.e. it preserves angles (but not areas) and whatever else that comes with complex analyticity. However, it’s not as straightforward as Penrose suggests. The image below (taken from Brown and Churchill) shows what happens to lines parallel to the x and y axis in the z plane respectively: they become circles in the w plane. So this particular function actually does map circles to circles (which is what holomorphic functions have to do) but only if we think of straight lines as being particular cases of circles, namely circles “of infinite radius”, as Penrose puts it. Frankly, it is quite amazing what Penrose expects in terms of mental ‘agility’ of the reader. Brown and Churchill are much more formal in their approach (lots of symbols and equations I mean, and lots of mathematical proofs) but, to be honest, I find their stuff easier to read, even if their textbook is a full-blown graduate level course in complex analysis.

I’ll conclude this post here with two more graphs: they give an idea of how the Cartesian and polar coordinate spaces can be mapped to the Riemann sphere. In both cases, the grid on the plane appears distorted on the sphere: the grid lines are still perpendicular, but the areas of the grid squares shrink as they approach the ‘north pole’.  The mathematical equations for the stereographic projection, and the illustration above, suggest that the w = 1/z function is basically just another way to transform one coordinate system into another. But then I must admit there is a lot of finer print that I don’t understand – as yet that is. It’s sad that Penrose doesn’t help out very much here.

# Complex functions and power series

Pre-scriptum (dated 26 June 2020): the material in this post remains interesting but is, strictly speaking, not a prerequisite to understand quantum mechanics. It’s yet another example of how one can get lost in math when studying or teaching physics. Original post:

As I am going back and forth between this textbook on complex analysis (Brown and Churchill, Complex Variables and Applications) and Roger Penrose’s Road to Reality, I start to wonder how complete Penrose’s ‘Complete Guide to the Laws of the Universe actually is or, to be somewhat more precise, how (in)accessible. I guess the advice of an old friend – a professor emeritus in nuclear physics, so he should know! – might have been appropriate. He basically said I should not try to take any shortcuts (because he thinks there aren’t any), and that I should just go for some standard graduate-level courses on physics and math, instead of all these introductory texts that I’ve been trying to read (such as Roger Penrose’s books – but it’s true I’ve tried others too). The advice makes sense, if only because such standard courses are now available on-line. Better still: they are totally free. One good example is the Physics OpenCourseWare (OCW) from MIT: I just went on their website (ocw.mit.edu/courses/physics) and I was truly amazed.

Roger Penrose is not easy to read indeed: he also takes almost 200 pages to explain complex analysis, i.e. as many pages as the Brown and Churchill textbook,  but I find the more formal treatment of the subject-matter in the math handbook easier to read than Penrose’s prose. So, while I won’t drop Penrose as yet (this time I really do not want to give up), I will probably to (continue to) invest more time in other books – proper textbooks really – than in reading Penrose. In fact, I’ve started to look at Penrose’s prose as a more creative approach, but one that makes sense only after you’ve gone through all of the ‘basics’. And so these ‘basics’ are probably easier to grasp by reading some tried and tested textbooks on math and physics first.

That being said, let me get back to the matter on hand by making good on at least one of the promises I made in the previous posts, and that is to say something more about the Taylor expansion of analytic functions. I wrote in one of these posts that this Taylor expansion is something truly amazing. It is, in my humble view at least. We have all these (complex-valued) functions of complex variables out there – such as ez, log z, zc, complex polynomials, complex trigonometric and hyperbolic functions, and all of the possible combinations of the aforementioned – and so all of these functions can be represented by a (infinite) sum of powers f(z) = Σ an(z-z0)n (with n going from 0 to infinity and with zbeing some arbitrary point in the function’s domain). So that’s the Taylor power series.

All complex functions? Well… Yes. Or no. All analytic functions. I won’t go into the details (if only because it is hard to integrate mathematical formulas with the XML editor I am using here) but so it is an amazing result, which leads to many other amazing results. In fact, the proof of Taylor’s Theorem is, in itself, rather marvelous (yes, I went through it) as it involves other spectacular formulas (such as the Cauchy integral formula). However, I won’t go into this here. Just take it for granted:  Taylor’s Theorem is great stuff!

But so the function has to be analytic – or well-behaved as I’d say. Otherwise we can’t use Taylor’s Theorem and, hence, this power series expansion doesn’t work. So let’s define (complex) analyticity: a function w = f(z) = f(x+iy) = u(x) + i(y) is analytic (a often-used synonym is holomorphic) if its partial derivatives ux, uy, vand vy exist and respect the so-called Cauchy-Riemann equations: ux = vy and u= -vx.

These conditions are restrictive (much more restrictive than the conditions for analyticity for real-valued functions). Indeed, there are many complex functions which look good at first sight – if only because there’s no problem whatsoever with their real-valued components u(x,y) and v(x,y) in real analysis/calculus – but which do not satisfy these Cauchy-Riemann conditions. Hence, they are not ‘well-behaved’ in the complex space (in Penrose’s words: they do not conform to the ‘Eulerian notion’ of a function), and so they are of relatively little use – for solving complex problems that is!

A function such as f(z) = 2x + ixy2 is an example: there are no complex numbers for which the Cauchy-Riemann conditions hold (check it out: the Cauchy-Riemann conditions are xy = 1 and y = 0, and these two equations contradict each other). Hence, we can’t do much with this function really. For other functions, such as x2 + iy2, the Cauchy-Riemann conditions are only satisfied in very limited subsets of the functions’ domain: in this particular case, the Cauchy-Riemann conditions only hold when y = x. We also have functions for which the Cauchy-Riemann conditions hold everywhere except in one or more singularities. The very simple function f(z) = 1/z is an example of this: it is easy to see we have a problem when z = 0, because the function value is not determined there.

As for the last category of functions, one would expect there is an easy way out, using limits or something. And there is. Singularities are not a big problem and we can work our way around them. I found out that ‘working our way around them’ usually involves a so-called Laurent series representation of the function, which is a more generalized version of the Taylor expansion involving not only positive but also negative powers.

One of the other things I learned is how to solve contour integrals. Solving contour integrals is the equivalent, in the complex world, of integrating a real-valued function over an interval [a, b] on the real line. Contours are curves in the complex plane. They can be simple and closed (like a circle or an ellipse for instance), and usually they are, but then they don’t have to be simple and closed: they can self-intersect, for example, or they can go around some point or around some other curve more than once (and, yes, that makes a big difference: when you go around twice or more, you’re talking a different curve really).

But so these things can all be solved relatively easily – everything is relative of course 🙂 – if (and only if) the functions involved are analytic and/or if the singularities involved are isolated. In fact, we can extend the definition of analytic functions somewhat and define meromorphic functions: meromorphic functions are functions that are analytic throughout their domain except for one or more isolated singular points (also referred to as poles for some strange reason).

Holomorphic (and meromorphic) functions w = f(z) can be looked at as transformations: they map some domain D in the (complex) z plane to some region (referred to as the image of D) in the (complex) w plane. What makes them holomorphic is the fact that they preserve angles – as illustrated below. If you have read the first post on this blog, then you have seen this illustration already. Let me therefore present something better. The image below illustrates the function w = f(z) = z2 or, vice versa, the function z = √w = w1/2 (i.e. the square root of w). Indeed, that’s a very well-behaved function in the complex plane: every complex number (including negative real numbers) has two square roots in the complex plane, and so that’s what is shown below.

Huh? What’s this?

It’s simple: the illustration above uses color (in this case, a simple gray scale only really) to connect the points in the square region of the domain (i.e. the z plane) with an equally square region in the w plane (i.e. the image of the square region in the z plane). You can verify the properties of the z = w1/2 function indeed. At z=i we easily recognize a spot on the right ear of this person: it’s the w=−1 point in the w plane. Now, the same spot is found at z=−i. This reflects the fact that i2 = (-i)=−1. Similarly, this guy’s mouth, which represents the region near w=−i, is found near the two square roots of −in the z plane, which are z=±(1−i )/√2. In fact, every part of this man’s face is found at two places in the z plane, except for the spot between his eyes, which corresponds to w=0, and also to z=0 under this transformation. Finally, you can see that this transformation is holomorphic: all (local) angles are preserved. In that sense, it’s just like a conformal map of the Earth indeed. [Note, however, that I am glossing over the fact that z = w1/2 is multiple-valued: for each value of w, we have two square roots in the z-plane. That actually creates a bit of a problem when interpreting the image above. See the post scriptum at the bottom of this post for more text on this.]

[…] OK. This is fun. [And, no, it’s not me: I found this picture on the site of a Swedish guy called Hans Lundmark, and so I give him credit for making complex analysis so much fun: just Google him to find out more.] However, let’s get somewhat more serious again and ask ourselves why we’d need holomorphism?

Well… To be honest, I am not quite sure because I haven’t gone through the rest of the course material yet – or through all these other chapters in Penrose’s book (I’ve done 10 now, so there’s 24 left). That being said, I do note that, besides all of the niceties I described above (like easy solutions for contour integrals), it is also ‘nice’ that the real and imaginary parts of an analytic function automatically satisfy the Laplace equation.

Huh? Yes. Come on! I am sure you have heard about the Laplace equation in college: it is that partial differential equation which we encounter in most physics problems. In two dimensions (i.e. in the complex plane), it’s the condition that δ2f/δx+ δ2f/δyequals zero. It is a condition which pops us in electrostatics, fluid dynamics and many other areas of physical research, and I am sure you’ve seen simple examples of it.

So, this fact alone (i.e. the fact that analytic functions pop up everywhere in physics) should be justification enough in itself I guess. Indeed, the first nine chapters of Brown and Churchill’s course are only there because of the last three, which focus on applications of complex analysis in physics. But is there anything more to it?

Of course there is. Roger Penrose would not dedicate more than 200 pages to all of the above if it was not for more serious stuff than some college-level problems in physics, or to explain fluid dynamics or electrostatics. Indeed, after explaining why hypercomplex numbers (such as quaternions) are less useful than one might expect (Chapter 11 of his Road to Reality is about hypercomplex numbers and why they are useful/not useful), he jumps straight into the study of higher-dimensional manifolds (Chapter 12) and symmetry groups (Chapter 13). Now I don’t understand anything of that, as yet that is, but I sure do understand I’ll need to work my way through it if I ever want to understand what follows after: spacetime and Minkowskian geometry, quantum algebra and quantum field theory, and then the truly exotic stuff, such as supersymmetry and string theory. [By the way, from what I just gathered from the Internet, string theory has not been affected by the experimental confirmation of the existence of the Higgs particle, as it is said to be compatible with the so-called Standard Model.]

So, onwards we go! I’ll keep you posted. However, as I look at that (long) list of MIT courses, it may take some time before you hear from me again. 🙂

Post scriptum:

The nice picture of this Swedish guy is also useful to illustrate the issue of multiple-valuedness, which is an issue that pops up almost everywhere when you’re dealing with complex functions. Indeed, if we write w in its polar form w = reiθ, then its square root can be written as z = w1/2 = (√r)ei(θ/2+kπ), with k equal to either 0 or 1. So we have two square roots indeed for each w: each root has a length (i.e. its modulus or absolute value) equal to √r (i.e the positive square root of r) but their arguments are θ/2 and θ/2 + π respectively, and so that’s not the same. It means that, if z is a square root of some w in the w plane, then -z will also be a square root of w. Indeed, if the argument of z is equal to θ/2, then the argument of -z will be π/2 + π = π/2 + π – 2π = π/2 – π (we just rotate the vector by 180 degrees, which corresponds to a reflection through the origin). It means that, as we let the vector w = reiθ move around the origin – so if we let θ make a full circle starting from, let’s say, -π/2 (take the value w = –i for instance, i.e. near the guy’s mouth) – then the argument of the image of w will only go from (1/2)(-π/2) = -π/4 to (1/2)(-π/2 + 2π) = 3π/4. These two angles, i.e. -π/4 and 3π/4, correspond to the diagonal y=-x in the complex plane, and you can see that, as we go from -π/4 to 3π/4 in the z-plane, the image over this 180 degree swoop does cover every feature of this guy’s face – and here I mean not half of the guy’s face, but all of it. Continuing in the same direction (i.e. counterclockwise) from 3π/4 back to -π/4 just repeats the image. I will leave it to you to find out what happens with the angles on the two symmetry axes (y = x and y = -x).