Electron and photon strings

In my previous posts, I’ve been playing with… Well… At the very least, a new didactic approach to understanding the quantum-mechanical wavefunction. I just boldly assumed the matter-wave is a gravitational wave. I did so by associating its components with the dimension of gravitational field strength: newton per kg, which is the dimension of acceleration (N/kg = m/s2). Why? When you remember the physical dimension of the electromagnetic field is N/C (force per unit charge), then that’s kinda logical, right? 🙂 The math is beautiful. Key consequences include the following:

  1. Schrodinger’s equation becomes an energy diffusion equation.
  2. Energy densities give us probabilities.
  3. The elementary wavefunction for the electron gives us the electron radius.
  4. Spin angular momentum can be interpreted as reflecting the right- or left-handedness of the wavefunction.
  5. Finally, the mysterious boson-fermion dichotomy is no longer “deep down in relativistic quantum mechanics”, as Feynman famously put it.

It’s all great. Every day brings something new. 🙂 Today I want to focus on our weird electron model and how we get God’s number (aka the fine-structure constant) out of it. Let’s recall the basics of it. We had the elementary wavefunction:

ψ = a·ei[E·t − px]/ħa·ei[E·t − px]/ħ = a·cos(px/ħ − E∙t/ħ) + i·a·sin(px/ħ − E∙t/ħ)

In one-dimensional space (think of a particle traveling along some line), the vectors (p and x) become scalars, and so we simply write:

ψ = a·ei[E·t − p∙x]/ħa·ei[E·t − p∙x]/ħ = a·cos(p∙x/ħ − E∙t/ħ) + i·a·sin(p∙x/ħ − E∙t/ħ)

This wavefunction comes with constant probabilities |ψ|2  = a2, so we need to define a space outside of which ψ = 0. Think of the particle-in-a-box model. This is obvious oscillations pack energy, and the energy of our particle is finite. Hence, each particle – be it a photon or an electron – will pack a finite number of oscillations. It will, therefore, occupy a finite amount of space. Mathematically, this corresponds to the normalization condition: all probabilities have to add up to one, as illustrated below.probability in a boxNow, all oscillations of the elementary wavefunction have the same amplitude: a. [Terminology is a bit confusing here because we use the term amplitude to refer to two very different things here: we may say a is the amplitude of the (probability) amplitude ψ. So how many oscillations do we have? What is the size of our box? Let us assume our particle is an electron, and we will reduce its motion to a one-dimensional motion only: we’re thinking of it as traveling along the x-axis. We can then use the y- and z-axes as mathematical axes only: they will show us how the magnitude and direction of the real and imaginary component of ψ. The animation below (for which I have to credit Wikipedia) shows how it looks like.wavicle animationOf course, we can have right- as well as left-handed particle waves because, while time physically goes by in one direction only (we can’t reverse time), we can count it in two directions: 1, 2, 3, etcetera or −1, −2, −3, etcetera. In the latter case, think of time ticking away. 🙂 Of course, in our physical interpretation of the wavefunction, this should explain the (spin) angular momentum of the electron, which is – for some mysterious reason that we now understand 🙂 – always equal to = ± ħ/2.

Now, because a is some constant here, we may think of our box as a cylinder along the x-axis. Now, the rest mass of an electron is about 0.510 MeV, so that’s around 8.19×10−14 N∙m, so it will pack some 1.24×1020 oscillations per second. So how long is our cylinder here? To answer that question, we need to calculate the phase velocity of our wave. We’ll come back to that in a moment. Just note how this compares to a photon: the energy of a photon will typically be a few electronvolt only (1 eV ≈ 1.6 ×10−19 N·m) and, therefore, it will pack like 1015 oscillations per second, so that’s a density (in time) that is about 100,000 times less.

Back to the angular momentum. The classical formula for it is L = I·ω, so that’s angular frequency times angular mass. What’s the angular velocity here? That’s easy: ω = E/ħ. What’s the angular mass? If we think of our particle as a tiny cylinder, we may use the formula for its angular mass: I = m·r2/2. We have m: that’s the electron mass, right? Right? So what is r? That should be the magnitude of the rotating vector, right? So that’s a. Of course, the mass-energy equivalence relation tells us that E = mc2, so we can write:

L = I·ω = (m·r2/2)·(E/ħ) = (1/2)·a2·m·(mc2/ħ) = (1/2)·a2·m2·c2

Does it make sense? Maybe. Maybe not. You can check the physical dimensions on both sides of the equation, and that works out: we do get something that is expressed in N·m·s, so that’s action or angular momentum units. Now, we know L must be equal to = ± ħ/2. [As mentioned above, the plus or minus sign depends on the left- or right-handedness of our wavefunction, so don’t worry about that.] How do we know that? Because of the Stern-Gerlach experiment, which has been repeated a zillion times, if not more. Now, if L = J, then we get the following equation for a:  Compton radius formulaThis is the formula for the radius of an electron. To be precise, it is the Compton scattering radius, so that’s the effective radius of an electron as determined by scattering experiments. You can calculate it: it is about 3.8616×10−13 m, so that’s the picometer scale, as we would expect.

This is a rather spectacular result. As far as I am concerned, it is spectacular enough for me to actually believe my interpretation of the wavefunction makes sense.

Let us now try to think about the length of our cylinder once again. The period of our wave is equal to T = 1/f = 1/(ω/2π) = 1/[(E/ħ)·2π] = 1/(E/h) = h/E. Now, the phase velocity (vp) will be given by:

vp = λ·= (2π/k)·(ω/2π) = ω/k = (E/ħ)/(p/ħ) = E/p = E/(m·vg) = (m·c2)/(m·vg) = c2/vg

This is very interesting, because it establishes an inverse proportionality between the group and the phase velocity of our wave, with c2 as the coefficient of inverse proportionality. In fact, this equation looks better if we write as vp·vg = c2. Of course, the group velocity (vg) is the classical velocity of our electron. This equation shows us the idea of an electron at rest doesn’t make sense: if vg = 0, then vp times zero must equal c2, which cannot be the case: electrons must move in space. More generally, speaking, matter-particles must move in space, with the photon as our limiting case: it moves at the speed of light. Hence, for a photon, we find that vp = vg = E/p = c.

How can we calculate the length of a photon or an electron? It is an interesting question. The mentioned orders or magnitude of the frequency (1015 or 1020) gives us the number of oscillations per second. But how many do we have in one photon, or in one electron?

Let’s first think about photons, because we have more clues here. Photons are emitted by atomic oscillators: atoms going from one state (energy level) to another. We know how to calculate to calculate the Q of these atomic oscillators (see, for example, Feynman I-32-3): it is of the order of 108, which means the wave train will last about 10–8 seconds (to be precise, that is the time it takes for the radiation to die out by a factor 1/e). Now, the frequency of sodium light, for example, is 0.5×1015 oscillations per second, and the decay time is about 3.2×10–8 seconds, so that makes for (0.5×1015)·(3.2×10–8) = 16 million oscillations. Now, the wavelength is 600 nanometer (600×10–9) m), so that gives us a wavetrain with a length of (600×10–9)·(16×106) = 9.6 m.

These oscillations may or may not have the same amplitude and, hence, each of these oscillations may pack a different amount of energies. However, if the total energy of our sodium light photon (i.e. about 2 eV ≈ 3.3×10–19 J) are to be packed in those oscillations, then each oscillation would pack about 2×10–26 J, on average, that is. We speculated in other posts on how we might imagine the actual wave pulse that atoms emit when going from one energy state to another, so we don’t do that again here. However, the following illustration of the decay of a transient signal dies out may be useful.decay-time1

This calculation is interesting. It also gives us an interesting paradox: if a photon is a pointlike particle, how can we say its length is like 10 meter or more? Relativity theory saves us here. We need to distinguish the reference frame of the photon – riding along the wave as it is being emitted, so to speak – and our stationary reference frame, which is that of the emitting atom. Now, because the photon travels at the speed of light, relativistic length contraction will make it look like a pointlike particle.

What about the electron? Can we use similar assumptions? For the photon, we can use the decay time to calculate the effective number of oscillations. What can we use for an electron? We will need to make some assumption about the phase velocity or, what amounts to the same, the group velocity of the particle. What formulas can we use? The p = m·v is the relativistically correct formula for the momentum of an object if m = mv, so that’s the same m we use in the E = mc2 formula. Of course, v here is, obviously, the group velocity (vg), so that’s the classical velocity of our particle. Hence, we can write:

p = m·vg = (E/c2vg ⇔ vg = p/m =  p·c2/E

This is just another way of writing that vg = c2/vp or vp = c2/vg so it doesn’t help, does it? Maybe. Maybe not. Let us substitute in our formula for the wavelength:

λ = vp/f = vp·T = vp⋅(h/E) = (c2/vg)·(h/E) = h/(m·vg) = h/p 

This gives us the other de Broglie relation: λ = h/p. This doesn’t help us much, although it is interesting to think about it. The = E/h relation is somewhat intuitive: higher energy, higher frequency. In contrast, what the λ = h/p relation tells us that we get an infinite wavelength if the momentum becomes really small. What does this tell us? I am not sure. Frankly, I’ve look at the second de Broglie relation like a zillion times now, and I think it’s rubbish. It’s meant to be used for the group velocity, I feel. I am saying that because we get a non-sensical energy formula out of it. Look at this:

  1. E = h·f and p = h/λ. Therefore, f = E/h and λ = p/h.
  2. v = λ = (E/h)∙(p/h) = E/p
  3. p = m·v. Therefore, E = v·p = m·v2

E = m·v2? This formula is only correct if c, in which case it becomes the E = mc2 equation. So it then describes a photon, or a massless matter-particle which… Well… That’s a contradictio in terminis. 🙂 In all other cases, we get nonsense.

Let’s try something differently.  If our particle is at rest, then p = 0 and the p·x/ħ term in our wavefunction vanishes, so it’s just:

ψ = a·ei·E·t/ħa·cos(E∙t/ħ) − i·a·sin(E∙t/ħ)

Hence, our wave doesn’t travel. It has the same amplitude at every point in space at any point in time. Both the phase and group velocity become meaningless concepts. The amplitude varies – because of the sine and cosine – but the probability remains the same: |ψ|2  = a2. Hmm… So we need to find another way to define the size of our box. One of the formulas I jotted down in my paper in which I analyze the wavefunction as a gravitational wave was this one:F1

It was a physical normalization condition: the energy contributions of the waves that make up a wave packet need to add up to the total energy of our wave. Of course, for our elementary wavefunction here, the subscripts vanish and so the formula reduces to E = (E/c2a2·(E22), out of which we get our formula for the scattering radius: = ħ/mc. Now how do we pack that energy in our cylinder? Assuming that energy is distributed uniformly, we’re tempted to write something like E = a2·l or, looking at the geometry of the situation:

E = π·a2·l ⇔ = E/(π·a2)

It’s just the formula for the volume of a cylinder. Using the value we got for the Compton scattering radius (= 3.8616×10−13 m), we find an l that’s equal to (8.19×10−14)/(π·14.9×10−26) =≈ 0.175×1012Meter? Yes. We get the following formula:

length formula

0.175×1012 m is 175 million kilometer. That’s – literally – astronomic. It corresponds to 583 light-seconds, or 9.7 light-minutes. So that’s about 1.17 times the (average) distance between the Sun and the Earth. You can see that we do need to build a wave packet: that space is a bit too large to look for an electron, right? 🙂

Could we possibly get some less astronomic proportions? What if we impose that should equal a? We get the following condition:l over aWe find that m would have to be equal to m ≈ 1.11×10−36 kg. That’s tiny. In fact, it’s equivalent to an energy of about  equivalent to 0.623 eV (which you’ll see written as 623 milli-eV. This corresponds to light with a wavelength of about 2 micro-meter (μm), so that’s in the infrared spectrum. It’s a funny formula: we find, basically, that the l/ratio is proportional to m4. Hmm… What should we think of this? If you have any ideas, let me know !

Post scriptum (3 October 2017): The paper is going well. Getting lots of downloads, and the views on my blog are picking up too. But I have been vicious. Substituting B for (1/c)∙iE or for −(1/c)∙iE implies a very specific choice of reference frame. The imaginary unit is a two-dimensional concept: it only makes sense when giving it a plane view. Literally. Indeed, my formulas assume the i (or −i) plane is perpendicular to the direction of propagation of the elementary quantum-mechanical wavefunction. So… Yes. The need for rotation matrices is obvious. But my physical interpretation of the wavefunction stands. 🙂


Strings in classical and quantum physics

This post is not about string theory. The goal of this post is much more limited: it’s to give you a better understanding of why the metaphor of the string is so appealing. Let’s recapitulate the basics by see how it’s used in classical as well as in quantum physics.

In my posts on music and math, or music and physics, I described how a simple single string always vibrates in various modes at the same time: every tone is a mixture of an infinite number of elementary waves. These elementary waves, which are referred to as harmonics (or as (normal) modes, indeed) are perfectly sinusoidal, and their amplitude determines their relative contribution to the composite waveform. So we can always write the waveform F(t) as the following sum:

F(t) = a1sin(ωt) + a2sin(2ωt) + a3sin(3ωt) + … + ansin(nωt) + …

[If this is your first reading of my post, and the formula shies you away, please try again. I am writing most of my posts with teenage kids in mind, and especially this one. So I will not use anything else than simple arithmetic in this post: no integrals, no complex numbers, no logarithms. Just a bit of geometry. That’s all. So, yes, you should go through the trouble of trying to understand this formula. The only thing that you may have some trouble with is ω, i.e. angular frequency: it’s the frequency expressed in radians per time unit, rather than oscillations per second, so ω = 2π·f = 2π/T, with the frequency as you know it (i.e. oscillations per second) and T the period of the wave.]

I also noted that the wavelength of these component waves (λ) is determined by the length of the string (L), and by its length only: λ1 = 2L, λ2 = L, λ3 = (2/3)·L. So these wavelengths do not depend on the material of the string, or its tension. At any point in time (so keeping t constant, rather than x, as we did in the equation above), the component waves look like this:


etcetera (1/8, 1/9,…,1/n,… 1/∞)

That the wavelengths of the harmonics of any actual string only depend on its length is an amazing result in light of the complexities behind: a simple wound guitar string, for example, is not simple at all (just click the link here for a quick introduction to guitar string construction). Simple piano wire isn’t simple either: it’s made of high-carbon steel, i.e. a very complex metallic alloy. In fact, you should never think any material is simple: even the simplest molecular structures are very complicated things. Hence, it’s quite amazing all these systems are actually linear systems and that, despite the underlying complexity, those wavelength ratios form a simple harmonic series, i.e. a simple reciprocal function y = 1/x, as illustrated below.


A simple harmonic series? Hmm… I can’t resist noting that the harmonic series is, in fact, a mathematical beast. While its terms approach zero as x (or n) increases, the series itself is divergent. So it’s not like 1+1/2+1/4+1/8+…+1/2n+…, which adds up to 2. Divergent series don’t add up to any specific number. Even Leonhard Euler – the most famous mathematician of all times, perhaps – struggled with this. In fact, as late as in 1826, another famous mathematician, Niels Henrik Abel (in light of the fact he died at age 26 (!), his legacy is truly amazing), exclaimed that a series like this was “an invention of the devil”, and that it should not be used in any mathematical proof. But then God intervened through Abel’s contemporary Augustin-Louis Cauchy 🙂 who finally cracked the nut by rigorously defining the mathematical concept of both convergent as well as divergent series, and equally rigorously determining their possibilities and limits in mathematical proofs. In fact, while medieval mathematicians had already grasped the essentials of modern calculus and, hence, had already given some kind of solution to Zeno’s paradox of motion, Cauchy’s work is the full and final solution to it. But I am getting distracted, so let me get back to the main story.

More remarkable than the wavelength series itself, is its implication for the respective energy levels of all these modes. The material of the string, its diameter, its tension, etc will determine the speed with which the wave travels up and down the string. [Yes, that’s what it does: you may think the string oscillates up and down, and it does, but the waveform itself travels along the string. In fact, as I explained in my previous post, we’ve got two waves traveling simultaneously: one going one way and the other going the other.] For a specific string, that speed (i.e. the wave velocity) is some constant, which we’ll denote by c. Now, is, obviously, the product of the wavelength (i.e. the distance that the wave travels during one oscillation) and its frequency (i.e. the number of oscillations per time unit), so c = λ·f. Hence, f = c/λ and, therefore, f1 = (1/2)·c/L, f2 = (2/2)·c/L, f3 = (3/2)·c/L, etcetera. More in general, we write fn = (n/2)·c/L. In short, the frequencies are equally spaced. To be precise, they are all (1/2)·c/L apart.

Now, the energy of a wave is directly proportional to its frequency, always, in classical as well as in quantum mechanics. For example, for photons, we have the Planck-Einstein relation: E = h·f = ħ·ω. So that relation states that the energy is proportional to the (light) frequency of the photon, with h (i.e. he Planck constant) as the constant of proportionality. [Note that ħ is not some different constant. It’s just the ‘angular equivalent’ of h, so we have to use ħ = h/2π when frequencies are expressed in angular frequency, i.e. radians per second rather than hertz.] Because of that proportionality, the energy levels of our simple string are also equally spaced and, hence, inserting another proportionality constant, which I’ll denote by a instead of (because it’s some other constant, obviously), we can write:

En = a·fn = (n/2)·a·c/L

Now, if we denote the fundamental frequency f1 = (1/2)·c/L, quite simply, by f (and, likewise, its angular frequency as ω), then we can re-write this as:

En = n·a·f = n·ā·ω (ā = a/2π)

This formula is exactly the same as the formula used in quantum mechanics when describing atoms as atomic oscillators, and why and how they radiate light (think of the blackbody radiation problem, for example), as illustrated below: En = n·ħ·ω = n·h·f. The only difference between the formulas is the proportionality constant: instead of a, we have Planck’s constant here: h, or ħ when the frequency is expressed as an angular frequency.

quantum energy levels

This grand result – that the energy levels associated with the various states or modes of a system are equally spaced – is referred to as the equipartition theorem in physics, and it is what connects classical and quantum physics in a very deep and fundamental way.

In fact, because they’re nothing but proportionality constants, the value of both a and h depends on our units. If w’d use the so-called natural units, i.e. equating ħ to 1, the energy formula becomes En = n·ω, and, hence, our unit of energy and our unit of frequency become one and the same. In fact, we can, of course, also re-define our time unit such that the fundamental frequency ω is one, i.e. one oscillation per (re-defined) time unit, so then we have the following remarkable formula:

En = n

Just think about it for a moment: what I am writing here is E0 = 0, E1 = 1, E2 = 2, E3 = 3, E4 = 4, etcetera. Isn’t that amazing? I am describing the structure of a system here – be it an atom emitting or absorbing photons, or a macro-thing like a guitar string – in terms of its basic components (i.e. its modes), and it’s as simple as counting: 0, 1, 2, 3, 4, etc.

You may think I am not describing anything real here, but I am. We cannot do whatever we wanna do: some stuff is grounded in reality, and in reality only—not in the math. Indeed, the fundamental frequency of our guitar string – which we used as our energy unit – is a property of the string, so that’s real: it’s not just some mathematical shape out: it depends on the string’s length (which determines its wavelength), and it also depends on the propagation speed of the wave, which depends on other basic properties of the string, such as its material, its diameter, and its tension. Likewise, the fundamental frequency of our atomic oscillator is a property of the atomic oscillator or, to use a much grander term, a property of the Universe. That’s why h is a fundamental physical constant. So it’s not like π or e. [When reading physics as a freshman, it’s always useful to clearly distinguish physical constants (like Avogadro’s number, for example) from mathematical constants (like Euler’s number).]

The theme that emerges here is what I’ve been saying a couple of times already: it’s all about structure, and the structure is amazingly simple. It’s really that equipartition theorem only: all you need to know is that the energy levels of the modes of a system – any system really: an atom, a molecular system, a string, or the Universe itself – are equally spaced, and that the space between the various energy levels depends on the fundamental frequency of the system. Moreover, if we use natural units, and also re-define our time unit so the fundamental frequency is equal to 1 (so the frequencies of the other modes are 2, 3, 4 etc), then the energy levels are just 0, 1, 2, 3, 4 etc. So, yes, God kept things extremely simple. 🙂

In order to not cause too much confusion, I should add that you should read what I am writing very carefully: I am talking the modes of a system. The system itself can have any energy level, of course, so there is no discreteness at the level of the system. I am not saying that we don’t have a continuum there. We do. What I am saying is that its energy level can always be written as a (potentially infinite) sum of the energies of its components, i.e. its fundamental modes, and those energy levels are discrete. In quantum-mechanical systems, their spacing is h·f, so that’s the product of Planck’s constant and the fundamental frequency. For our guitar, the spacing is a·f (or, using angular frequency, ā·ω: it’s the same amount). But that’s it really. That’s the structure of the Universe. 🙂

Let me conclude by saying something more about a. What information does it capture? Well… All of the specificities of the string (like its material or its tension) determine the fundamental frequency f and, hence, the energy levels of the basic modes of our string. So a has nothing to do with the particularities of our string, of our system in general. However, we can, of course, pluck our string very softly or, conversely, give it a big jolt. So our a coefficient is not related to the string as such, but to the total energy of our string. In other words, a is related to those amplitudes  a1, a2, etc in our F(t) = a1sin(ωt) + a2sin(2ωt) + a3sin(3ωt) + … + ansin(nωt) + … wave equation.

How exactly? Well… Based on the fact that the total energy of our wave is equal to the sum of the energies of all of its components, I could give you some formula. However, that formula does use an integral. It’s an easy integral: energy is proportional to the square of the amplitude, and so we’re integrating the square of the wave function over the length of the string. But then I said I would not have any integral in this post, and so I’ll stick to that. In any case, even without the formula, you know enough now. For example, one of the things you should be able to reflect on is the relation between a and h. It’s got to do with structure, of course. 🙂 But I’ll let you think about that yourself.

[…] Let me help you. Think of the meaning of Planck’s constant h. Let’s suppose we’d have some elementary ‘wavicle’, like that elementary ‘string’ that string theorists are trying to define: the smallest ‘thing’ possible. It would have some energy, i.e. some frequency. Perhaps it’s just one full oscillation. Just enough to define some wavelength and, hence, some frequency indeed. Then that thing would define the smallest time unit that makes sense: it would the time corresponding to one oscillation. In turn, because of the E = h·relation, it would define the smallest energy unit that makes sense. So, yes, h is the quantum (or fundamental unit) of energy. It’s very small indeed (h = 6.626070040(81)×10−34 J·s, so the first significant digit appears only after 33 zeroes behind the decimal point) but that’s because we’re living at the macro-scale and, hence, we’re measuring stuff in huge units: the joule (J) for energy, and the second (s) for time. In natural units, h would be one. [To be precise, physicist prefer to equate ħ, rather than h, to one when talking natural units. That’s because angular frequency is more ‘natural’ as well when discussing oscillations.]

What’s the conclusion? Well… Our will be some integer multiple of h. Some incredibly large multiple, of course, but a multiple nevertheless. 🙂

Post scriptum: I didn’t say anything about strings in this post or, let me qualify, about those elementary ‘strings’ that string theorists try to define. Do they exist? Feynman was quite skeptical about it. He was happy with the so-called Standard Model of phyics, and he would have been very happy to know that the existence Higgs field has been confirmed experimentally (that discovery is what prompted my blog!), because that confirms the Standard Model. The Standard Model distinguishes two types of wavicles: fermions and bosons. Fermions are matter particles, such as quarks and electrons. Bosons are force carriers, like photons and gluons. I don’t know anything about string theory, but my guts instinct tells me there must be more than just one mathematical description of reality. It’s the principle of duality: concepts, theorems or mathematical structures can be translated into other concepts, theorems or structures. But… Well… We’re not talking equivalent descriptions here: string theory is different theory, it seems. For a brief but totally incomprehensible overview (for novices at least), click on the following link, provided by the C.N. Yang Institute for Theoretical Physics. If anything, it shows I’ve got a lot more to study as I am inching forward on the difficult Road to Reality. 🙂

The Strange Theory of Light and Matter (II)

If we limit our attention to the interaction between light and matter (i.e. the behavior of photons and electrons only—so we we’re not talking quarks and gluons here), then the ‘crazy ideas’ of quantum mechanics can be summarized as follows:

  1. At the atomic or sub-atomic scale, we can no longer look at light as an electromagnetic wave. It consists of photons, and photons come in blobs. Hence, to some extent, photons are ‘particle-like’.
  2. At the atomic or sub-atomic scale, electrons don’t behave like particles. For example, if we send them through a slit that’s small enough, we’ll observe a diffraction pattern. Hence, to some extent, electrons are ‘wave-like’.

In short, photons aren’t waves, but they aren’t particles either. Likewise, electrons aren’t particles, but they aren’t waves either. They are neither. The weirdest thing of all, perhaps, is that, while light and matter are two very different things in our daily experience – light and matter are opposite concepts, I’d say, just like particles and waves are opposite concepts) – they look pretty much the same in quantum physics: they are both represented by a wavefunction.

Let me immediately make a little note on terminology here. The term ‘wavefunction’ is a bit ambiguous, in my view, because it makes one think of a real wave, like a water wave, or an electromagnetic wave. Real waves are described by real-valued wave functions describing, for example, the motion of a ball on a spring, or the displacement of a gas (e.g. air) as a sound wave propagates through it, or – in the case of an electromagnetic wave – the strength of the electric and magnetic field.

You may have questions about the ‘reality’ of fields, but electromagnetic waves – i.e. the classical description of light – are quite ‘real’ too, even if:

  1. Light doesn’t travel in a medium (like water or air: there is no aether), and
  2. The magnitude of the electric and magnetic field (they are usually denoted by E and B) depend on your reference frame: if you calculate the fields using a moving coordinate system, you will get a different mixture of E and B. Therefore, E and B may not feel very ‘real’ when you look at them separately, but they are very real when we think of them as representing one physical phenomenon: the electromagnetic interaction between particles. So the E and B mix is, indeed, a dual representation of one reality. I won’t dwell on that, as I’ve done that in another post of mine.

How ‘real’ is the quantum-mechanical wavefunction?

The quantum-mechanical wavefunction is not like any of these real waves. In fact, I’d rather use the term ‘probability wave’ but, apparently, that’s used only by bloggers like me 🙂 and so it’s not very scientific. That’s for a good reason, because it’s not quite accurate either: the wavefunction in quantum mechanics represents probability amplitudes, not probabilities. So we should, perhaps, be consistent and term it a ‘probability amplitude wave’ – but then that’s too cumbersome obviously, so the term ‘probability wave’ may be confusing, but it’s not so bad, I think.

Amplitudes and probabilities are related as follows:

  1. Probabilities are real numbers between 0 and 1: they represent the probability of something happening, e.g. a photon moves from point A to B, or a photon is absorbed (and emitted) by an electron (i.e. a ‘junction’ or ‘coupling’, as you know).
  2. Amplitudes are complex numbers, or ‘arrows’ as Feynman calls them: they have a length (or magnitude) and a direction.
  3. We get the probabilities by taking the (absolute) square of the amplitudes.

So photons aren’t waves, but they aren’t particles either. Likewise, electrons aren’t particles, but they aren’t waves either. They are neither. So what are they? We don’t have words to describe what they are. Some use the term ‘wavicle’ but that doesn’t answer the question, because who knows what a ‘wavicle’ is? So we don’t know what they are. But we do know how they behave. As Feynman puts it, when comparing the behavior of light and then of electrons in the double-slit experiment—struggling to find language to describe what’s going on: “There is one lucky break: electrons behave just like light.”

He says so because of that wave function: the mathematical formalism is the same, for photons and for electrons. Exactly the same? […] But that’s such a weird thing to say, isn’t it? We can’t help thinking of light as waves, and of electrons as particles. They can’t be the same. They’re different, aren’t they? They are.

Scales and senses

To some extent, the weirdness can be explained because the scale of our world is not atomic or sub-atomic. Therefore, we ‘see’ things differently. Let me say a few words about the instrument we use to look at the world: our eye.

Our eye is particular. The retina has two types of receptors: the so-called cones are used in bright light, and distinguish color, but when we are in a dark room, the so-called rods become sensitive, and it is believed that they actually can detect a single photon of light. However, neural filters only allow a signal to pass to the brain when at least five photons arrive within less than a tenth of a second. A tenth of a second is, roughly, the averaging time of our eye. So, as Feynman puts it: “If we were evolved a little further so we could see ten times more sensitively, we wouldn’t have this discussion—we would all have seen very dim light of one color as a series of intermittent little flashes of equal intensity.” In other words, the ‘particle-like’ character of light would have been obvious to us.

Let me make a few more remarks here, which you may or may not find useful. The sense of ‘color’ is not something ‘out there’:  colors, like red or brown, are experiences in our eye and our brain. There are ‘pigments’ in the cones (cones are the receptors that work only if the intensity of the light is high enough) and these pigments absorb the light spectrum somewhat differently, as a result of which we ‘see’ color. Different animals see different things. For example, a bee can distinguish between white paper using zinc white versus lead white, because they reflect light differently in the ultraviolet spectrum, which the bee can see but we don’t. Bees can also tell the direction of the sun without seeing the sun itself, because they are sensitive to polarized light, and the scattered light of the sky (i.e. the blue sky as we see it) is polarized. The bee can also notice flicker up to 200 oscillations per second, while we see it only up to 20, because our averaging time is like a tenth of a second, which is short for us, but so the averaging time of the bee is much shorter. So we cannot see the quick leg movements and/or wing vibrations of bees, but the bee can!

Sometimes we can’t see any color. For example, we see the night sky in ‘black and white’ because the light intensity is very low, and so it’s our rods, not the cones, that process the signal, and so these rods can’t ‘see’ color. So those beautiful color pictures of nebulae are not artificial (although the pictures are often enhanced). It’s just that the camera that is used to take those pictures (film or, nowadays, digital) is much more sensitive than our eye. 

Regardless, color is a quality which we add to our experience of the outside world ourselves. What’s out there are electromagnetic waves with this or that wavelength (or, what amounts to the same, this or that frequency). So when critics of the exact sciences say so much is lost when looking at (visible) light as an electromagnetic wave in the range of 430 to 790 teraherz, they’re wrong. Those critics will say that physics reduces reality. That is not the case.

What’s going on is that our senses process the signal that they are receiving, especially when it comes to vision. As Feynman puts it: “None of the other senses involves such a large amount of calculation, so to speak, before the signal gets into a nerve that one can make measurements on. The calculations for all the rest of the senses usually happen in the brain itself, where it is very difficult to get at specific places to make measurements, because there are so many interconnections. Here, with the visual sense, we have the light, three layers of cells making calculations, and the results of the calculations being transmitted through the optic nerve.”

Hence, things like color and all of the other sensations that we have are the object of study of other sciences, including biochemistry and neurobiology, or physiology. For all we know, what’s ‘out there’ is, effectively, just ‘boring’ stuff, like electromagnetic radiation, energy and ‘elementary particles’—whatever they are. No colors. Just frequencies. 🙂

Light versus matter

If we accept the crazy ideas of quantum mechanics, then the what and the how become one and the same. Hence we can say that photons and electrons are a wavefunction somewhere in space. Photons, of course, are always traveling, because they have energy but no rest mass. Hence, all their energy is in the movement: it’s kinetic, not potential. Electrons, on the other hand, usually stick around some nucleus. And, let’s not forget, they have an electric charge, so their energy is not only kinetic but also potential.

But, otherwise, it’s the same type of ‘thing’ in quantum mechanics: a wavefunction, like those below.


Why diagram A and B? It’s just to emphasize the difference between a real-valued wave function and those ‘probability waves’ we’re looking at here (diagram C to H). A and B represent a mass on a spring, oscillating at more or less the same frequency but a different amplitude. The amplitude here means the displacement of the mass. The function describing the displacement of a mass on a spring (so that’s diagram A and B) is an example of a real-valued wave function: it’s a simple sine or cosine function, as depicted below. [Note that a sine and a cosine are the same function really, except for a phase difference of 90°.]

cos and sine

Let’s now go back to our ‘probability waves’. Photons and electrons, light and matter… The same wavefunction? Really? How can the sunlight that warms us up in the morning and makes trees grow be the same as our body, or the tree? The light-matter duality that we experience must be rooted in very different realities, isn’t it?

Well… Yes and no. If we’re looking at one photon or one electron only, it’s the same type of wavefunction indeed. The same type… OK, you’ll say. So they are the same family or genus perhaps, as they say in biology. Indeed, both of them are, obviously, being referred to as ‘elementary particles’ in the so-called Standard Model of physics. But so what makes an electron and a photon specific as a species? What are the differences?

There’re  quite a few, obviously:

1. First, as mentioned above, a photon is a traveling wave function and, because it has no rest mass, it travels at the ultimate speed, i.e. the speed of light (c). An electron usually sticks around or, if it travels through a wire, it travels at very low speeds. Indeed, you may find it hard to believe, but the drift velocity of the free electrons in a standard copper wire is measured in cm per hour, so that’s very slow indeed—and while the electrons in an electron microscope beam may be accelerated up to 70% of the speed of light, and close to in those huge accelerators, you’re not likely to find an electron microscope or accelerator in Nature. In fact, you may want to remember that a simple thing like electricity going through copper wires in our houses is a relatively modern invention. 🙂

So, yes, those oscillating wave functions in those diagrams above are likely to represent some electron, rather than a photon. To be precise, the wave functions above are examples of standing (or stationary) waves, while a photon is a traveling wave: just extend that sine and cosine function in both directions if you’d want to visualize it or, even better, think of a sine and cosine function in an envelope traveling through space, such as the one depicted below.

Photon wave

Indeed, while the wave function of our photon is traveling through space, it is likely to be limited in space because, when everything is said and done, our photon is not everywhere: it must be somewhere. 

At this point, it’s good to pause and think about what is traveling through space. It’s the oscillation. But what’s the oscillation? There is no medium here, and even if there would be some medium (like water or air or something like aether—which, let me remind you, isn’t there!), the medium itself would not be moving, or – I should be precise here – it would only move up and down as the wave propagates through space, as illustrated below. To be fully complete, I should add we also have longitudinal waves, like sound waves (pressure waves): in that case, the particles oscillate back and forth along the direction of wave propagation. But you get the point: the medium does not travel with the wave.


When talking electromagnetic waves, we have no medium. These E and B vectors oscillate but is very wrong to assume they use ‘some core of nearby space’, as Feynman puts it. They don’t. Those field vectors represent a condition at one specific point (admittedly, a point along the direction of travel) in space but, for all we know, an electromagnetic wave travels in a straight line and, hence, we can’t talk about its diameter or so.

Still, as mentioned above, we can imagine, more or less, what E and B stand for (we can use field line to visualize them, for instance), even if we have to take into account their relativity (calculating their values from a moving reference frame results in different mixtures of E and B). But what are those amplitudes? How should we visualize them?

The honest answer is: we can’t. They are what they are: two mathematical quantities which, taken together, form a two-dimensional vector, which we square to find a value for a real-life probability, which is something that – unlike the amplitude concept – does make sense to us. Still, that representation of a photon above (i.e. the traveling envelope with a sine and cosine inside) may help us to ‘understand’ it somehow. Again, you absolute have to get rid of the idea that these ‘oscillations’ would somehow occupy some physical space. They don’t. The wave itself has some definite length, for sure, but that’s a measurement in the direction of travel, which is often denoted as x when discussing uncertainty in its position, for example—as in the famous Uncertainty Principle (ΔxΔp > h).

You’ll say: Oh!—but then, at the very least, we can talk about the ‘length’ of a photon, can’t we? So then a photon is one-dimensional at least, not zero-dimensional! The answer is yes and no. I’ve talked about this before and so I’ll be short(er) on it now. A photon is emitted by an atom when an electron jumps from one energy level to another. It thereby emits a wave train that lasts about 10–8 seconds. That’s not very long but, taking into account the rather spectacular speed of light (3×10m/s), that still makes for a wave train with a length of not less than 3 meter. […] That’s quite a length, you’ll say. You’re right. But you forget that light travels at the speed of light and, hence, we will see this length as zero because of the relativistic length contraction effect. So… Well… Let me get back to the question: if photons and electrons are both represented by a wavefunction, what makes them different?

2. A more fundamental difference between photons and electrons is how they interact with each other.

From what I’ve written above, you understand that probability amplitudes are complex numbers, or ‘arrows’, or ‘two-dimensional vectors’. [Note that all of these terms have precise mathematical definitions and so they’re actually not the same, but the difference is too subtle to matter here.] Now, there are two ways of combining amplitudes, which are referred to as ‘positive’ and ‘negative’ interference respectively. I should immediately note that there’s actually nothing ‘positive’ or ‘negative’ about the interaction: we’re just putting two arrows together, and there are two ways to do that. That’s all.

The diagrams below show you these two ways. You’ll say: there are four! However, remember that we square an arrow to get a probability. Hence, the direction of the final arrow doesn’t matter when we’re taking the square: we get the same probability. It’s the direction of the individual amplitudes that matters when combining them. So the square of A+B is the same as the square of –(A+B) = –A+(–B) = –AB. Likewise, the square of AB is the same as the square of –(AB) = –A+B.

vector addition

These are the only two logical possibilities for combining arrows. I’ve written ad nauseam about this elsewhere: see my post on amplitudes and statistics, and so I won’t go into too much detail here. Or, in case you’d want something less than a full mathematical treatment, I can refer you to my previous post also, where I talked about the ‘stopwatch’ and the ‘phase’: the convention for the stopwatch is to have its hand turn clockwise (obviously!) while, in quantum physics, the phase of a wave function will turn counterclockwise. But so that’s just convention and it doesn’t matter, because it’s the phase difference between two amplitudes that counts. To use plain language: it’s the difference in the angles of the arrows, and so that difference is just the same if we reverse the direction of both arrows (which is equivalent to putting a minus sign in front of the final arrow).

OK. Let me get back to the lesson. The point is: this logical or mathematical dichotomy distinguishes bosons (i.e. force-carrying ‘particles’, like photons, which carry the electromagnetic force) from fermions (i.e. ‘matter-particles’, such as electrons and quarks, which make up protons and neutrons). Indeed, the so-called ‘positive’ and ‘negative’ interference leads to two very different behaviors:

  1. The probability of getting a boson where there are already present, is n+1 times stronger than it would be if there were none before.
  2. In contrast, the probability of getting two electrons into exactly the same state is zero. 

The behavior of photons makes lasers possible: we can pile zillions of photon on top of each other, and then release all of them in one powerful burst. [The ‘flickering’ of a laser beam is due to the quick succession of such light bursts. If you want to know how it works in detail, check my post on lasers.]

The behavior of electrons is referred to as Fermi’s exclusion principle: it is only because real-life electrons can have one of two spin polarizations (i.e. two opposite directions of angular momentum, which are referred to as ‘up’ or ‘down’, but they might as well have been referred to as ‘left’ or ‘right’) that we find two electrons (instead of just one) in any atomic or molecular orbital.

So, yes, while both photons and electrons can be described by a similar-looking wave function, their behavior is fundamentally different indeed. How is that possible? Adding and subtracting ‘arrows’ is a very similar operation, isn’it?

It is and it isn’t. From a mathematical point of view, I’d say: yes. From a physics point of view, it’s obviously not very ‘similar’, as it does lead to these two very different behaviors: the behavior of photons allows for laser shows, while the behavior of electrons explain (almost) all the peculiarities of the material world, including us walking into doors. 🙂 If you want to check it out for yourself, just check Feynman’s Lectures for more details on this or, else, re-read my posts on it indeed.

3. Of course, there are even more differences between photons and electrons than the two key differences I mentioned above. Indeed, I’ve simplified a lot when I wrote what I wrote above. The wavefunctions of electrons in orbit around a nucleus can take very weird shapes, as shown in the illustration below—and please do google a few others if you’re not convinced. As mentioned above, they’re so-called standing waves, because they occupy a well-defined position in space only, but standing waves can look very weird. In contrast, traveling plane waves, or envelope curves like the one above, are much simpler.


In short: yes, the mathematical representation of photons and electrons (i.e. the wavefunction) is very similar, but photons and electrons are very different animals indeed.

Potentiality and interconnectedness

I guess that, by now, you agree that quantum theory is weird but, as you know, quantum theory does explain all of the stuff that couldn’t be explained before: “It works like a charm”, as Feynman puts it. In fact, he’s often quoted as having said the following:

“It is often stated that of all the theories proposed in this century, the silliest is quantum theory. Some say the the only thing that quantum theory has going for it, in fact, is that it is unquestionably correct.”

Silly? Crazy? Uncommon-sensy? Truth be told, you do get used to thinking in terms of amplitudes after a while. And, when you get used to them, those ‘complex’ numbers are no longer complicated. 🙂 Most importantly, when one thinks long and hard enough about it (as I am trying to do), it somehow all starts making sense.

For example, we’ve done away with dualism by adopting a unified mathematical framework, but the distinction between bosons and fermions still stands: an ‘elementary particle’ is either this or that. There are no ‘split personalities’ here. So the dualism just pops up at a different level of description, I’d say. In fact, I’d go one step further and say it pops up at a deeper level of understanding.

But what about the other assumptions in quantum mechanics. Some of them don’t make sense, do they? Well… I struggle for quite a while with the assumption that, in quantum mechanics, anything is possible really. For example, a photon (or an electron) can take any path in space, and it can travel at any speed (including speeds that are lower or higher than light). The probability may be extremely low, but it’s possible.

Now that is a very weird assumption. Why? Well… Think about it. If you enjoy watching soccer, you’ll agree that flying objects (I am talking about the soccer ball here) can have amazing trajectories. Spin, lift, drag, whatever—the result is a weird trajectory, like the one below:


But, frankly, a photon taking the ‘southern’ route in the illustration below? What are the ‘wheels and gears’ there? There’s nothing sensible about that route, is there?


In fact, there’s at least three issues here:

  1. First, you should note that strange curved paths in the real world (such as the trajectories of billiard or soccer balls) are possible only because there’s friction involved—between the felt of the pool table cloth and the ball, or between the balls, or, in the case of soccer, between the ball and the air. There’s no friction in the vacuum. Hence, in empty space, all things should go in a straight line only.
  2. While it’s quite amazing what’s possible, in the real world that is, in terms of ‘weird trajectories’, even the weirdest trajectories of a billiard or soccer ball can be described by a ‘nice’ mathematical function. We obviously can’t say the same of that ‘southern route’ which a photon could follow, in theory that is. Indeed, you’ll agree the function describing that trajectory cannot be ‘nice’. So even we’d allow all kinds of ‘weird’ trajectories, shouldn’t we limit ourselves to ‘nice’ trajectories only? I mean: it doesn’t make sense to allow the photons traveling from your computer screen to your retina take some trajectory to the Sun and back, does it?
  3. Finally, and most fundamentally perhaps, even when we would assume that there’s some mechanism combining (a) internal ‘wheels and gears’ (such as spin or angular momentum) with (b) felt or air or whatever medium to push against, what would be the mechanism determining the choice of the photon in regard to these various paths? In Feynman’s words: How does the photon ‘make up its mind’?

Feynman answers these questions, fully or partially (I’ll let you judge), when discussing the double-slit experiment with photons:

“Saying that a photon goes this or that way is false. I still catch myself saying, “Well, it goes either this way or that way,” but when I say that, I have to keep in mind that I mean in the sense of adding amplitudes: the photon has an amplitude to go one way, and an amplitude to go the other way. If the amplitudes oppose each other, the light won’t get there—even though both holes are open.”

It’s probably worth re-calling the results of that experiment here—if only to help you judge whether or not Feynman fully answer those questions above!

The set-up is shown below. We have a source S, two slits (A and B), and a detector D. The source sends photons out, one by one. In addition, we have two special detectors near the slits, which may or may not detect a photon, depending on whether or not they’re switched on as well as on their accuracy.

set-up photons

First, we close one of the slits, and we find that 1% of the photons goes through the other (so that’s one photon for every 100 photons that leave S). Now, we open both slits to study interference. You know the results already:

  1. If we switch the detectors off (so we have no way of knowing where the photon went), we get interference. The interference pattern depends on the distance between A and B and varies from 0% to 4%, as shown in diagram (a) below. That’s pretty standard. As you know, classical theory can explain that too assuming light is an electromagnetic wave. But so we have blobs of energy – photons – traveling one by one. So it’s really that double-slit experiment with electrons, or whatever other microscopic particles (as you know, they’ve done these interference electrons with large molecules as well—and they get the same result!). We get the interference pattern by using those quantum-mechanical rules to calculate probabilities: we first add the amplitudes, and it’s only when we’re finished adding those amplitudes, that we square the resulting arrow to the final probability.
  2. If we switch those special detectors on, and if they are 100% reliable (i.e. all photons going through are being detected), then our photon suddenly behaves like a particle, instead of as a wave: they will go through one of the slits only, i.e. either through A, or, alternatively, through B. So the two special detectors never go off together. Hence, as Feynman puts it: we shouldn’t think there is “sneaky way that the photon divides in two and then comes back together again.” It’s one or the other way and, and there’s no interference: the detector at D goes off 2% of the time, which is the simple sum of the probabilities for A and B (i.e. 1% + 1%).
  3. When the special detectors near A and B are not 100% reliable (and, hence, do not detect all photons going through), we have three possible final conditions: (i) A and D go off, (ii) B and D go off, and (iii) D goes off alone (none of the special detectors went off). In that case, we have a final curve that’s a mixture, as shown in diagram (c) and (d) below. We get it using the same quantum-mechanical rules: we add amplitudes first, and then we square to get the probabilities.

double-slit photons - results

Now, I think you’ll agree with me that Feynman doesn’t answer my (our) question in regard to the ‘weird paths’. In fact, all of the diagrams he uses assume straight or nearby paths. Let me re-insert two of those diagrams below, to show you what I mean.

 Many arrowsFew arrows

So where are all the strange non-linear paths here? Let me, in order to make sure you get what I am saying here, insert that illustration with the three crazy routes once again. What we’ve got above (Figure 33 and 34) is not like that. Not at all: we’ve got only straight lines there! Why? The answer to that question is easy: the crazy paths don’t matter because their amplitudes cancel each other out, and so that allows Feynman to simplify the whole situation and show all the relevant paths as straight lines only.


Now, I struggled with that for quite a while. Not because I can’t see the math or the geometry involved. No. Feynman does a great job showing why those amplitudes cancel each other out indeed (if you want a summary, see my previous post once again).  My ‘problem’ is something else. It’s hard to phrase it, but let me try: why would we even allow for the logical or mathematical possibility of ‘weird paths’ (and let me again insert that stupid diagram below) if our ‘set of rules’ ensures that the truly ‘weird’ paths (like that photon traveling from your computer screen to your eye doing a detour taking it to the Sun and back) cancel each other out anyway? Does that respect Occam’s Razor? Can’t we devise some theory including ‘sensible’ paths only?

Of course, I am just an autodidact with limited time, and I know hundreds (if not thousands) of the best scientists have thought long and hard about this question and, hence, I readily accept the answer is quite simply: no. There is no better theory. I accept that answer, ungrudgingly, not only because I think I am not so smart as those scientists but also because, as I pointed out above, one can’t explain any path that deviates from a straight line really, as there is no medium, so there are no ‘wheels and gears’. The only path that makes sense is the straight line, and that’s only because…

Well… Thinking about it… We think the straight path makes sense because we have no good theory for any of the other paths. Hmm… So, from a logical point of view, assuming that the straight line is the only reasonable path is actually pretty random too. When push comes to shove, we have no good theory for the straight line either!

You’ll say I’ve just gone crazy. […] Well… Perhaps you’re right. 🙂 But… Somehow, it starts to make sense to me. We allow for everything to, then, indeed weed out the crazy paths using our interference theory, and so we do end up with what we’re ending up with: some kind of vague idea of “light not really traveling in a straight line but ‘smelling’ all of the neighboring paths around it and, hence, using a small core of nearby space“—as Feynman puts it.

Hmm… It brings me back to Richard Feynman’s introduction to his wonderful little book, in which he says we should just be happy to know how Nature works and not aspire to know why it works that way. In fact, he’s basically saying that, when it comes to quantum mechanics, the ‘how’ and the ‘why’ are one and the same, so asking ‘why’ doesn’t make sense, because we know ‘how’. He compares quantum theory with the system of calculation used by the Maya priests, which was based on a system of bars and dots, which helped them to do complex multiplications and divisions, for example. He writes the following about it: “The rules were tricky, but they were a much more efficient way of getting an answer to complicated questions (such as when Venus would rise again) than by counting beans.”

When I first read this, I thought the comparison was flawed: if a common Maya Indian did not want to use the ‘tricky’ rules of multiplication and what have you (or, more likely, if he didn’t understand them), he or she could still resort to counting beans. But how do we count beans in quantum mechanics? We have no ‘simpler’ rules than those weird rules about adding amplitudes and taking the (absolute) square of complex numbers so… Well… We actually are counting beans here then:

  1. We allow for any possibility—any path: straight, curved or crooked. Anything is possible.
  2. But all those possibilities are inter-connected. Also note that every path has a mirror image: for every route ‘south’, there is a similar route ‘north’, so to say, except for the straight line, which is a mirror image of itself.
  3. And then we have some clock ticking. Time goes by. It ensures that the paths that are too far removed from the straight line cancel each other. [Of course, you’ll ask: what is too far? But I answered that question –  convincingly, I hope – in my previous post: it’s not about the ‘number of arrows’ (as suggested in the caption under that Figure 34 above), but about the frequency and, hence, the ‘wavelength’ of our photon.]
  4. And so… Finally, what’s left is a limited number of possibilities that interfere with each other, which results in what we ‘see’: light seems to use a small core of space indeed–a limited number of nearby paths.

You’ll say… Well… That still doesn’t ‘explain’ why the interference pattern disappears with those special detectors or – what amounts to the same – why the special detectors at the slits never click simultaneously.

You’re right. How do we make sense of that? I don’t know. You should try to imagine what happens for yourself. Everyone has his or her own way of ‘conceptualizing’ stuff, I’d say, and you may well be content and just accept all of the above without trying to ‘imagine’ what’s happening really when a ‘photon’ goes through one or both of those slits. In fact, that’s the most sensible thing to do. You should not try to imagine what happens and just follow the crazy calculus rules.

However, when I think about it, I do have some image in my head. The image is of one of those ‘touch-me-not’ weeds. I quickly googled one of these images, but I couldn’t quite find what I am looking for: it would be more like something that, when you touch it, curls up in a little ball. Any case… You know what I mean, I hope.


You’ll shake your head now and solemnly confirm that I’ve gone mad. Touch-me-not weeds? What’s that got to do with photons? 

Well… It’s obvious you and I cannot really imagine how a photon looks like. But I think of it as a blob of energy indeed, which is inseparable, and which effectively occupies some space (in three dimensions that is). I also think that, whatever it is, it actually does travel through both slits, because, as it interferes with itself, the interference pattern does depend on the space between the two slits as well as the width of those slits. In short, the whole ‘geometry’ of the situation matters, and so the ‘interaction’ is some kind of ‘spatial’ thing. [Sorry for my awfully imprecise language here.]

Having said that, I think it’s being detected by one detector only because only one of them can sort of ‘hook’ it, somehow. Indeed, because it’s interconnected and inseparable, it’s the whole blob that gets hooked, not just one part of it. [You may or may not imagine that the detectors that’s got the best hold of it gets it, but I think that’s pushing the description too much.] In any case, the point is that a photon is surely not like a lizard dropping its tail while trying to escape. Perhaps it’s some kind of unbreakable ‘string’ indeed – and sorry for summarizing string theory so unscientifically here – but then a string oscillating in dimensions we can’t imagine (or in some dimension we can’t observe, like the Kaluza-Klein theory suggests). It’s something, for sure, and something that stores energy in some kind of oscillation, I think.

What it is, exactly, we can’t imagine, and we’ll probably never find out—unless we accept that the how of quantum mechanics is not only the why, but also the what. 🙂

Does this make sense? Probably not but, if anything, I hope it fired your imagination at least. 🙂

Planck’s constant (II)

My previous post was tough. Tough for you–if you’ve read it. But tough for me too. 🙂

The blackbody radiation problem is complicated but, when everything is said and done, what the analysis says is that the the ‘equipartition theorem’ in the kinetic theory of gases ‘theorem (or the ‘theorem concerning the average energy of the center-of-mass motion’, as Feynman terms it), is not correct. That equipartition theorem basically states that, in thermal equilibrium, energy is shared equally among all of its various forms. For example, the average kinetic energy per degree of freedom in the translation motion of a molecule should equal that of its rotational motions. That equipartition theorem is also quite precise: it also states that the mean energy, for each atom or molecule, for each degree of freedom, is kT/2. Hence, that’s the (average) energy the 19th century scientists also assigned to the atomic oscillators in a gas.

However, the discrepancy between the theoretical and empirical result of their work shows that adding atomic oscillators–as radiators and absorbers of light–to the system (a box of gas that’s being heated) is not just a matter of adding additional ‘degree of freedom’ to the system. It can’t be analyzed in ‘classical’ terms: the actual spectrum of blackbody radiation shows that these atomic oscillators do not absorb, on average, an amount of energy equal to kT/2. Hence, they are not just another ‘independent direction of motion’.

So what are they then? Well… Who knows? I don’t. But, as I didn’t quite go through the full story in my previous post, the least I can do is to try to do that here. It should be worth the effort. In Feynman’s words: “This was the first quantum-mechanical formula ever known, or discussed, and it was the beautiful culmination of decades of puzzlement.” And then it does not involve complex numbers or wave functions, so that’s another reason why looking at the detail is kind of nice. 🙂

Discrete energy levels and the nature of h

To solve the blackbody radiation problem, Planck assumed that the permitted energy levels of the atomic harmonic oscillator were equally spaced, at ‘distances’ ħωapart from each other. That’s what’s illustrated below.

Equally space energy levels

Now, I don’t want to make too many digressions from the main story, but this En = nħω0 formula obviously deserves some attention. First note it immediately shows why the dimension of ħ is expressed in joule-seconds (J·s), or electronvolt-seconds (J·s): we’re multiplying it with a frequency indeed, so that’s something expressed per second (hence, its dimension is s–1) in order to get a measure of energy: joules or, because of the atomic scale, electronvolts. [The eV is just a (much) smaller measure than the joule, but it amounts to the same: 1 eV ≈ 1.6×10−19 J.]

One thing to note is that the equal spacing consists of distances equal to ħω0, not of ħ. Hence, while h, or ħ (ħ is the constant to be used when the frequency is expressed in radians per second, rather than oscillations per second, so ħ = h/2π) is now being referred to as the quantum of action (das elementare Wirkungsquantum in German), Planck referred to it as as a Hilfsgrösse only (that’s why he chose the h as a symbol, it seems), so that’s an auxiliary constant only: the actual quantum of action is, of course, ΔE, i.e. the difference between the various energy levels, which is the product of ħ and ω(or of h and ν0 if we express frequency in oscillations per second, rather than in angular frequency). Hence, Planck (and later Einstein) did not assume that an atomic oscillator emits or absorbs packets of energy as tiny as ħ or h, but packets of energy as big as ħωor, what amounts to the same (ħω = (h/2π)(2πν) = hν), hν0. Just to give an example, the frequency of sodium light (ν) is 500×1012 Hz, and so its energy is E = hν. That’s not a lot–about 2 eV only– but it still packs 500×1012 ‘quanta of action’ !

Another thing is that ω (or ν) is a continuous variable: hence, the assumption of equally spaced energy levels does not imply that energy itself is a discrete variable: light can have any frequency and, hence, we can also imagine photons with any energy level: the only thing we’re saying is that the energy of a photon of a specific color (i.e. a specific frequency ν) will be a multiple of hν.

Probability assumptions

The second key assumption of Planck as he worked towards a solution of the blackbody radiation problem was that the probability (P) of occupying a level of energy E is P(EαeE/kT. OK… Why not? But what is this assumption really? You’ll think of some ‘bell curve’, of course. But… No. That wouldn’t make sense. Remember that the energy has to be positive. The general shape of this P(E) curve is shown below.


The highest probability density is near E = 0, and then it goes down as E gets larger, with kT determining the slope of the curve (just take the derivative). In short, this assumption basically states that higher energy levels are not so likely, and that very high energy levels are very unlikely. Indeed, this formula implies that the relative chance, i.e. the probability of being in state E1 relative to the chance of being in state E0, is P1/Pe−(E1–E0)k= e−ΔE/kT. Now, Pis n1/N and Pis n0/N and, hence, we find that nmust be equal to n0e−ΔE/kT. What this means is that the atomic oscillator is less likely to be in a higher energy state than in a lower one.

That makes sense, doesn’t it? I mean… I don’t want to criticize those 19th century scientists but… What were they thinking? Did they really imagine that infinite energy levels were as likely as… Well… More down-to-earth energy levels? I mean… A mechanical spring will break when you overload it. Hence, I’d think it’s pretty obvious those atomic oscillators cannot be loaded with just about anything, can they? Garbage in, garbage out:  of course, that theoretical spectrum of blackbody radiation didn’t make sense!

Let me copy Feynman now, as the rest of the story is pretty straightforward:

Now, we have a lot of oscillators here, and each is a vibrator of frequency w0. Some of these vibrators will be in the bottom quantum state, some will be in the next one, and so forth. What we would like to know is the average energy of all these oscillators. To find out, let us calculate the total energy of all the oscillators and divide by the number of oscillators. That will be the average energy per oscillator in thermal equilibrium, and will also be the energy that is in equilibrium with the blackbody radiation and that should go in the equation for the intensity of the radiation as a function of the frequency, instead of kT. [See my previous post: that equation is I(ω) = (ω2kt)/(π2c2).]

Thus we let N0 be the number of oscillators that are in the ground state (the lowest energy state); N1 the number of oscillators in the state E1; N2 the number that are in state E2; and so on. According to the hypothesis (which we have not proved) that in quantum mechanics the law that replaced the probability eP.E./kT or eK.E./kT in classical mechanics is that the probability goes down as eΔE/kT, where ΔE is the excess energy, we shall assume that the number N1 that are in the first state will be the number N0 that are in the ground state, times e−ħω/kT. Similarly, N2, the number of oscillators in the second state, is N=N0e−2ħω/kT. To simplify the algebra, let us call e−ħω/k= x. Then we simply have N1 = N0x, N2 = N0x2, …, N= N0xn.

The total energy of all the oscillators must first be worked out. If an oscillator is in the ground state, there is no energy. If it is in the first state, the energy is ħω, and there are N1 of them. So N1ħω, or ħωN0x is how much energy we get from those. Those that are in the second state have 2ħω, and there are N2 of them, so N22ħω=2ħωN0x2 is how much energy we get, and so on. Then we add it all together to get Etot = N0ħω(0+x+2x2+3x3+…).

And now, how many oscillators are there? Of course, N0 is the number that are in the ground state, N1 in the first state, and so on, and we add them together: Ntot = N0(1+x+x2+x3+…). Thus the average energy is


Now the two sums which appear here we shall leave for the reader to play with and have some fun with. When we are all finished summing and substituting for x in the sum, we should get—if we make no mistakes in the sum—

Feynman concludes as follows: “This, then, was the first quantum-mechanical formula ever known, or ever discussed, and it was the beautiful culmination of decades of puzzlement. Maxwell knew that there was something wrong, and the problem was, what was right? Here is the quantitative answer of what is right instead of kT. This expression should, of course, approach kT as ω → 0 or as → .”

It does, of course. And so Planck’s analysis does result in a theoretical I(ω) curve that matches the observed I(ω) curve as a function of both temperature (T) and frequency (ω). But so what it is, then? What’s the equation describing the dotted curves? It’s given below:

formula blackbody

I’ll just quote Feynman once again to explain the shape of those dotted curves: “We see that for a large ω, even though we have ωin the numerator, there is an e raised to a tremendous power in the denominator, so the curve comes down again and does not “blow up”—we do not get ultraviolet light and x-rays where we do not expect them!”

Is the analysis necessarily discrete?

One question I can’t answer, because I just am not strong enough in math, is the question or whether or not there would be any other way to derive the actual blackbody spectrum. I mean… This analysis obviously makes sense and, hence, provides a theory that’s consistent and in accordance with experiment. However, the question whether or not it would be possible to develop another theory, without having recourse to the assumption that energy levels in atomic oscillators are discrete and equally spaced with the ‘distance’ between equal to hν0, is not easy to answer. I surely can’t, as I am just a novice, but I can imagine smarter people than me have thought about this question. The answer must be negative, because I don’t know of any other theory: quantum mechanics obviously prevailed. Still… I’d be interested to see the alternatives that must have been considered.

Post scriptum: The “playing with the sums” is a bit confusing. The key to the formula above is the substitution of (0+x+2x2+3x3+…)/(1+x+x2+x3+…) by 1/[(1/x)–1)] = 1/[eħω/kT–1]. Now, the denominator 1+x+x2+x3+… is the Maclaurin series for 1/(1–x). So we have:

(0+x+2x2+3x3+…)/(1+x+x2+x3+…) = (0+x+2x2+3x3+…)(1–x)

x+2x2+3x3… –x22x3–3x4… = x+x2+x3+x4

= –1+(1+x+x2+x3…) = –1 + 1/(1–x) = –(1–x)+1/(1–x) = x/(1–x).

Note the tricky bit: if x = e−ħω/kT, then eħω/kis x−1 = 1/x, and so we have (1/x)–1 in the denominator of that (mean) energy formula, not 1/(x–1). Now 1/[(1/x)–1)] = 1/[(1–x)/x] = x/(1–x), indeed, and so the formula comes out alright.

Photons as strings

In my previous post, I explored, somewhat jokingly, the grey area between classical physics and quantum mechanics: light as a wave versus light as a particle. I did so by trying to picture a photon as an electromagnetic transient traveling through space, as illustrated below. While actual physicists would probably deride my attempt to think of a photon as an electromagnetic transient traveling through space, the idea illustrates the wave-particle duality quite well, I feel.

Photon wave

Understanding light is the key to understanding physics. Light is a wave, as Thomas Young proved to the Royal Society of London in 1803, thereby demolishing Newton’s corpuscular theory. But its constituents, photons, behave like particles. According to modern-day physics, both were right. Just to put things in perspective, the thickness of the note card which Young used to split the light – ordinary sunlight entering his room through a pinhole in a window shutter – was 1/30 of an inch, or approximately 0.85 mm. Hence, in essence, this is a double-slit experiment with the two slits being separated by a distance of almost 1 millimeter. That’s enormous as compared to modern-day engineering tolerance standards: what was thin then, is obviously not considered to be thin now. Scale matters. I’ll come back to this.

Young’s experiment (from www.physicsclassroom.com)

Young experiment

The table below shows that the ‘particle character’ of electromagnetic radiation becomes apparent when its frequency is a few hundred terahertz, like the sodium light example I used in my previous post: sodium light, as emitted by sodium lamps, has a frequency of 500×1012 oscillations per second and, therefore (the relation between frequency and wavelength is very straightforward: their product is the velocity of the wave, so for light we have the simple λf = c equation), a wavelength of 600 nanometer (600×10–9 meter).

Electromagnetic spectrum

However, whether something behaves like a particle or a wave also depends on our measurement scale: 0.85 mm was thin in Young’s time, and so it was a delicate experiment then but now, it’s a standard classroom experiment indeed. The theory of light as a wave would hold until more delicate equipment refuted it. Such equipment came with another sense of scale. It’s good to remind oneself that Einstein’s “discovery of the law of the photoelectric effect”, which explained the photoelectric effect as the result of light energy being carried in discrete quantized packets of energy, now referred to as photons, goes back to 1905 only, and that the experimental apparatus which could measure it was not much older. So waves behave like particles if we look at them close enough. Conversely, particles behave like waves if we look at them close enough. So there is this zone where they are neither, the zone for which we invoke the mathematical formalism of quantum mechanics or, to put it more precisely, the formalism of quantum electrodynamics: that “strange theory of light and Matter”, as Feynman calls it.

Let’s have a look at how particles became waves. It should not surprise us that the experimental apparatuses needed to confirm that electrons–or matter in general–can actually behave like a wave is more recent than the 19th century apparatuses which led Einstein to develop his ‘corpuscular’ theory of light (i.e. the theory of light as photons). The engineering tolerances involved are daunting. Let me be precise here. To be sure, the phenomenon of electron diffraction (i.e. electrons going through one slit and producing a diffraction pattern on the other side) had been confirmed experimentally already in 1925, in the famous Davisson-Germer experiment. I am saying because it’s rather famous indeed. First, because electron diffraction was a weird thing to contemplate at the time. Second, because it confirmed the de Broglie hypothesis only two years after Louis de Broglie had advanced it. And, third, because Davisson and Germer had never intended to set it up to detect diffraction: it was pure coincidence. In fact, the observed diffraction pattern was the result of a laboratory accident, and Davisson and Germer weren’t aware of other, conscious, attempts of trying to prove the de Broglie hypothesis. 🙂 […] OK. I am digressing. Sorry. Back to the lesson.

The nanotechnology that was needed to confirm Feynman’s 1965 thought experiment on electron interference (i.e. electrons going through two slits and interfering with each other (rather than producing some diffraction pattern as they go through one slit only) – and, equally significant as an experiment result, with themselves as they go through the slit(s) one by one! – was only developed over the past decades. In fact, it was only in 2008 (and again in 2012) that the experiment was carried out exactly the way Feynman describes it in his Lectures.

It is useful to think of what such experiments entail from a technical point of view. Have a look at the illustration below, which shows the set-up. The insert in the upper-left corner shows the two slits which were used in the 2012 experiment: they are each 62 nanometer wide – that’s 50×10–9 m! – and the distance between them is 272 nanometer, or 0.272 micrometer. [Just to be complete: they are 4 micrometer tall (4×10–6 m), and the thing in the middle of the slits is just a little support (150 nm) to make sure the slit width doesn’t vary.]

The second inset (in the upper-right corner) shows the mask that can be moved to close one or both slits partially or completely. The mask is 4.5µm wide ×20µm tall. Please do take a few seconds to contemplate the technology behind this feat: a nanometer is a millionth of a millimeter, so that’s a billionth of a meter, and a micrometer is a millionth of a meter. To imagine how small a nanometer is, you should imagine dividing one millimeter in ten, and then one of these tenths in ten again, and again, and once again, again, and again. In fact, you actually cannot imagine that because we live in the world we live in and, hence, our mind is used only to addition (and subtraction) when it comes to comparing sizes and – to a much more limited extent – with multiplication (and division): our brain is, quite simply, not wired to deal with exponentials and, hence, it can’t really ‘imagine’ these incredible (negative) powers. So don’t think you can imagine it really, because one can’t: in our mind, these scales exist only as mathematical constructs. They don’t correspond to anything we can actually make a mental picture of.

Electron double-slit set-up

The electron beam consisted of electrons with an (average) energy of 600 eV. That’s not an awful lot: 8.5 times more than the energy of an electron in orbit in a atom, whose energy would be some 70 eV, so the acceleration before they went through the slits was relatively modest. I’ve calculated the corresponding de Broglie wavelength of these electrons in another post (Re-Visiting the Matter-Wave, April 2014), using the de Broglie equations: f = E/h or λ = p/h. And, of course, you could just google the article on the experiment and read about it, but it’s a good exercise, and actually quite simple: just note that you’ll need to express the energy in joule (not in eV) to get it right. Also note that you need to include the rest mass of the electron in the energy. I’ll let you try it (or else just go to that post of mine). You should find a de Broglie wavelength of 50 picometer for these electrons, so that’s 50×10–12 m. While that wavelength is less than a thousandth of the slit width (62 nm), and about 5,500 times smaller than the space between the two slits (272 nm), the interference effect was unambiguous in the experiment. I advice you to google the results yourself (or read that April 2014 post of mine if you want a summary): the experiment was done at the University of Nebraska-Lincoln in 2012.

Electrons and X-rays

To put everything in perspective: 50 picometer is like the wavelength of X-rays, and you can google similar double-slit experiments for X-rays: they also loose their ‘particle behavior’ when we look at them at this tiny scale. In short, scale matters, and the boundary between ‘classical physics’ (electromagnetics) and quantum physics (wave mechanics) is not clear-cut. If anything, it depends on our perspective, i.e. what we can measure, and we seem to be shifting that boundary constantly. In what direction?

Downwards obviously: we’re devising instruments that measure stuff at smaller and smaller scales, and what’s happening is that we can ‘see’ typical ‘particles’, including hard radiation such as gamma rays, as local wave trains. Indeed, the next step is clear-cut evidence for interference between gamma rays.

Energy levels of photons

We would not associate low-frequency electromagnetic waves, such as radio or radar waves, with photons. But light in the visible spectrum, yes. Obviously. […]

Isn’t that an odd dichotomy? If we see that, on a smaller scale, particles start to look like waves, why would the reverse not be true? Why wouldn’t we analyze radio or radar waves, on a much larger scale, as a stream of very (I must say extremely) low-energy photons? I know the idea sounds ridiculous, because the energies involved would be ridiculously low indeed. Think about it. The energy of a photon is given by the Planck relation: E = h= hc/λ. For visible light, with wavelengths ranging from 800 nm (red) to 400 nm (violet or indigo), the photon energies range between 1.5 and 3 eV. Now, the shortest wavelengths for radar waves are in the so-called millimeter band, i.e. they range from 1 mm to 1 cm. A wavelength of 1 mm corresponds to a photon energy of 0.00124 eV. That’s close to nothing, of course, and surely not the kind of energy levels that we can currently detect.

But you get the idea: there is a grey area between classical physics and quantum mechanics, and it’s our equipment–notably the scale of our measurements–that determine where that grey area begins, and where it ends, and it seems to become larger and larger as the sensitivity of our equipment improves.

What do I want to get at? Nothing much. Just some awareness of scale, as an introduction to the actual topic of this post, and that’s some thoughts on a rather primitive string theory of photons. What !? 

Yes. Purely speculative, of course. 🙂

Photons as strings

I think my calculations in the previous post, as primitive as they were, actually provide quite some food for thought. If we’d treat a photon in the sodium light band (i.e. the light emitted by sodium, from a sodium lamp for instance) just like any other electromagnetic pulse, we would find it’s a pulse of some 10 meter long. We also made sense of this incredibly long distance by noting that, if we’d look at it as a particle (which is what we do when analyzing it as a photon), it should have zero size, because it moves at the speed of light and, hence, the relativistic length contraction effect ensures we (or any observer in whatever reference frame really, because light always moves at the speed of light, regardless of the reference frame) will see it as a zero-size particle.

Having said that, and knowing damn well that we have treat the photon as an elementary particle, I would think it’s very tempting to think of it as a vibrating string.


Yes. Let me copy that graph again. The assumption I started with is a standard one in physics, and not something that you’d want to argue with: photons are emitted when an electron jumps from a higher to a lower energy level and, for all practical purposes, this emission can be analyzed as the emission of an electromagnetic pulse by an atomic oscillator. I’ll refer you to my previous post – as silly as it is – for details on these basics: the atomic oscillator has a Q, and so there’s damping involved and, hence, the assumption that the electromagnetic pulse resembles a transient should not sound ridiculous. Because the electric field as a function in space is the ‘reversed’ image of the oscillation in time, the suggested shape has nothing blasphemous.

Photon wave

Just go along with it for a while. First, we need to remind ourselves that what’s vibrating here is nothing physical: it’s an oscillating electromagnetic field. That being said, in my previous post, I toyed with the idea that the oscillation could actually also represent the photon’s wave function, provided we use a unit for the electric field that ensures that the area under the squared curve adds up to one, so as to normalize the probability amplitudes. Hence, I suggested that the field strength over the length of this string could actually represent the probability amplitudes, provided we choose an appropriate unit to measure the electric field.

But then I was joking, right? Well… No. Why not consider it? An electromagnetic oscillation packs energy, and the energy is proportional to the square of the amplitude of the oscillation. Now, the probability of detecting a particle is related to its energy, and such probability is calculated from taking the (absolute) square of probability amplitudes. Hence, mathematically, this makes perfect sense.

It’s quite interesting to think through the consequences, and I hope I will (a) understand enough of physics and (b) find enough time for this—one day! One interesting thing is that the field strength (i.e. the magnitude of the electric field vector) is a real number. Hence, if we equate these magnitudes with probability amplitudes, we’d have real probability amplitudes, instead of complex-valued ones. That’s not a very fundamental issue. It probably indicates we should also take into account the fact that the E vector also oscillates in the other direction that’s normal to the direction of propagation, i.e. the y-coordinate (assuming that the z-axis is the direction of propagation). To put it differently, we should take the polarization of the light into account. The figure below–which I took from Wikipedia again (by far the most convenient place to shop for images and animations: what would I do without it?– shows how the electric field vector moves in the xy-plane indeed, as the wave travels along the z-axis. So… Well… I still have to figure it all out, but the idea surely makes sense.


Another interesting thing to think about is how the collapse of the wave function would come about. If we think of a photon as a string, it must have some ‘hooks’ which could cause it to ‘stick’ or ‘collapse’ into a ‘lump’ as it hits a detector. What kind of hook? What force would come into play?

Well… The interaction between the photon and the photodetector is electromagnetic, but we’re looking for some other kind of ‘hook’ here. What could it be? I have no idea. Having said that, we know that the weakest of all fundamental forces—gravity—becomes much stronger—very much stronger—as the distance becomes smaller and smaller. In fact, it is said that, if we go to the Planck scale, the strength of the force of gravity becomes quite comparable with the other forces. So… Perhaps it’s, quite simply, the equivalent mass of the energy involved that gets ‘hooked’, somehow, as it starts interacting with the photon detector. Hence, when thinking about a photon as an oscillating string of energy, we should also think of that string as having some inseparable (equivalent) mass that, once it’s ‘hooked’, has no other option that to ‘collapse into itself’. [You may note there’s no quantum theory for gravity as yet. I am not sure how, but I’ve got a gut instinct that tells me that may help to explain why a photon consists of one single ‘unbreakable’ lump, although I need to elaborate this argument obviously.]

You must be laughing aloud now. A new string theory–really?

I know… I know… I haven’t reach sophomore level and I am already wildly speculating… Well… Yes. What I am talking about here has probably nothing to do with current string theories, although my proposed string would also replace the point-like photon by a one-dimensional ‘string’. However, ‘my’ string is, quite simply, an electromagnetic pulse (a transient actually, for reasons I explained in my previous post). Naive? Perhaps. However, I note that the earliest version of string theory is referred to as bosonic string theory, because it only incorporated bosons, which is what photons are.

So what? Well… Nothing… I am sure others have thought of this too, and I’ll look into it. It’s surely an idea which I’ll keep in the back of my head as I continue to explore physics. The idea is just too simple and beautiful to disregard, even if I am sure it must be pretty naive indeed. Photons as ten-meter long strings? Let’s just forget about it. 🙂 Onwards !!! 🙂

Post Scriptum: The key to ‘closing’ this discussion is, obviously, to be found in a full-blown analysis of the relativity of fields. So, yes, I have not done all of the required ‘homework’ on this and the previous post. I apologize for that. If anything, I hope it helped you to also try to think somewhat beyond the obvious. I realize I wasted a lot of time trying to understand the pre-cooked ready-made stuff that’s ‘on the market’, so to say. I still am, actually. Perhaps I should first thoroughly digest Feynman’s Lectures. In fact, I think that’s what I’ll try to do in the next year or so. Sorry for any inconvenience caused. 🙂